Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2024
 Homework 5 Solutions
 Residue Calculus, I

Due: Friday, March 15, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.

Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 4.1.1, parts (b), (d), and (e)
4.1.2, parts (b) and (c)
4.1.8

Submit your homework assignment on Canvas via Gradescope.
4.1.1. Evaluate the integrals $\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z$, where C is the unit circle centered at the origin and $f(z)$ is given below.
(b) $\frac{\cosh (1 / z)}{z}$
(d) $\frac{\log (z+2)}{2 z+1}$, principal branch
(e) $\frac{z+1 / z}{z(2 z-1 / 2 z)}$
4.1.2. Evaluate the integrals $\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z$, where C is the unit circle centered at the origin with $f(z)$ given below. Do these problems by both (i) enclosing the singular points inside C and (ii) enclosing the singular points outside C (by including the point at infinity). Show that you obtain the same result in both cases.
(b) $\frac{z^{2}+1}{z^{3}}$
(c) $z^{2} e^{-1 / z}$
4.1.8. Suppose $f(z)$ is a meromorphic function (i.e., $f(z)$ is analytic everywhere in the finite z plane except at isolated points where it has poles) with N simple zeros (i.e., $f\left(z_{0}\right)=0$, $\left.f^{\prime}\left(z_{0}\right) \neq 0\right)$ and M simple poles inside a circle C. Show that,

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=N-M .
$$

