Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2024
 Homework 5 Solutions
 Residue Calculus, I

Due: Friday, March 15, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.

Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 4.1.1, parts (b), (d), and (e)
4.1.2, parts (b) and (c)
4.1.8

Submit your homework assignment on Canvas via Gradescope.
4.1.1. Evaluate the integrals $\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z$, where C is the unit circle centered at the origin and $f(z)$ is given below.
(b) $\frac{\cosh (1 / z)}{z}$
(d) $\frac{\log (z+2)}{2 z+1}$, principal branch
(e) $\frac{z+1 / z}{z(2 z-1 / 2 z)}$

Solution: We will evaluate these integrals using the Cauchy Residue Theorem.
(b) The only singularity inside C is at $z=0$, which is an essential singularity due to the Laurent expansion of $\cosh (1 / z)$. Therefore, we compute the residue using the Laurent expansion of f around 0 :

$$
f(z)=\frac{1}{z}\left(\sum_{n=0}^{\infty} \frac{1}{z^{2 n}(2 n)!}\right)=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{1}{z^{2 n+1}(2 n)!},
$$

and therefore $\operatorname{Res}(f ; 0)=1$, so the Residue Theorem implies that

$$
\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ; 0)=1 .
$$

(d) For the principal branch of $w \mapsto \log w$, we take $w=r e^{i \theta}$ with $\theta \in[-\pi, \pi)$. The singularity of the numerator $\log (z+2)$ lies at $z=-2$, which is outside C, and the denominator has a simple zero at $z=-1 / 2$, which lies inside C. Therefore, we need only compute $\operatorname{Res}(f ;-1 / 2)$. This can be directly computed as,

$$
\operatorname{Res}(f ;-1 / 2)=\frac{\log (-1 / 2+2)}{\left.(2 z+1)^{\prime}\right|_{z=-1 / 2}}=\frac{1}{2} \log \frac{3}{2} .
$$

By the Residue Theorem,

$$
\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ;-1 / 2)=\frac{1}{2} \log \frac{3}{2} .
$$

(e) We rewrite this function as,

$$
f(z)=\frac{2 z^{2}+2}{z\left(4 z^{2}-1\right)} .
$$

Since the denominator is a polynomial with simple zeros, then f has simple poles at $z=0$ and $z= \pm 1 / 2$, all of which lie inside C. We compute the corresponding residues as follows:

$$
\begin{aligned}
\operatorname{Res}(f ; 0) & =\frac{\left.\left(2 z^{2}+2\right)\right|_{z=0}}{\left.\left(z\left(4 z^{2}-1\right)\right)^{\prime}\right|_{z=0}}=\frac{2}{-1}=-2, \\
\operatorname{Res}(f ;+1 / 2) & =\frac{\left.\left(2 z^{2}+2\right)\right|_{z=1 / 2}}{\left.\left(z\left(4 z^{2}-1\right)\right)^{\prime}\right|_{z=1 / 2}}=\frac{5 / 2}{\left.z(8 z)\right|_{z=1 / 2}}=\frac{5}{4}, \\
\operatorname{Res}(f ;-1 / 2) & =\frac{\left.\left(2 z^{2}+2\right)\right|_{z=-1 / 2}}{\left.\left(z\left(4 z^{2}-1\right)\right)^{\prime}\right|_{z=-1 / 2}}=\frac{5 / 2}{\left.z(8 z)\right|_{z=-1 / 2}}=\frac{5}{4} .
\end{aligned}
$$

Then by the Residue Theorem,

$$
\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ; 0)+\operatorname{Res}(f ; 1 / 2)+\operatorname{Res}(f ;-1 / 2)=\frac{1}{2}
$$

4.1.2. Evaluate the integrals $\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z$, where C is the unit circle centered at the origin with $f(z)$ given below. Do these problems by both (i) enclosing the singular points inside C and (ii) enclosing the singular points outside C (by including the point at infinity). Show that you obtain the same result in both cases.
(b) $\frac{z^{2}+1}{z^{3}}$
(c) $z^{2} e^{-1 / z}$

Solution: We will evaluate these integrals using the Cauchy Residue Theorem using two different ways. First we note that as a consequence of the definition,

$$
\operatorname{Res}(f ; \infty):=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \oint_{\partial B_{R}(0)} f(z) \mathrm{d} z,
$$

then $\sum_{j=1}^{M} \operatorname{Res}\left(f ; z_{j}\right)=\operatorname{Res}(f ; \infty)$, where $\left\{z_{j}\right\}_{j=1}^{M}$ are the singularities of f in the finite plane \mathbb{C}.
(b) The only singularity inside C is at $z=0$, and there are no singularities in the finite plane outside C. Therefore,

$$
\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ; 0)=\operatorname{Res}(f ; \infty)
$$

The Laurent expansion of f at 0 is given by the function itself, $f(z)=\frac{1}{z}+\frac{1}{z^{3}}$, so $\operatorname{Res}(f ; 0)=1$. To compute the Residue at infinity, we use the formula,

$$
\operatorname{Res}(f(z) ; \infty)=\operatorname{Res}\left(\frac{1}{w^{2}} f\left(\frac{1}{w}\right) ; 0\right)=\operatorname{Res}\left(\frac{1}{w}+w ; 0\right)=1
$$

Hence we have,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ; \infty)=1 \\
& \frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ; 0)=1
\end{aligned}
$$

as expected.
(c) Again, the only singularity inside C is at $z=0$, and there are no singularities in the finite plane outside C. So again we have,

$$
\frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ; 0)=\operatorname{Res}(f ; \infty)
$$

The point $z=0$ is an essential singularity for f, so we compute the Laurent expansion:

$$
f(z)=z^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n} n!}=z^{2}-z+\frac{1}{2}-\frac{1}{6 z}+\ldots
$$

so $\operatorname{Res}(f ; 0)=-1 / 6$. The residue at infinity is given by,

$$
\operatorname{Res}(f(z) ; \infty)=\operatorname{Res}\left(\frac{1}{w^{2}} f\left(\frac{1}{w}\right) ; 0\right)=\operatorname{Res}\left(\frac{e^{-w}}{w^{4}} ; 0\right)=-\frac{1}{6}
$$

Therefore, we have,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ; \infty)=-\frac{1}{6} \\
& \frac{1}{2 \pi i} \oint_{C} f(z) \mathrm{d} z=\operatorname{Res}(f ; 0)=-\frac{1}{6}
\end{aligned}
$$

4.1.8. Suppose $f(z)$ is a meromorphic function (i.e., $f(z)$ is analytic everywhere in the finite z plane except at isolated points where it has poles) with N simple zeros (i.e., $f\left(z_{0}\right)=0$, $f^{\prime}\left(z_{0}\right) \neq 0$) and M simple poles inside a circle C. Show that,

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=N-M
$$

Solution: Note that $\frac{f^{\prime}(z)}{f(z)}$ has singularities only where either $f(z)$ and/or $f^{\prime}(z)$ have singularities, or where $f(z)$ has zeros. Since $f^{\prime}(z)$ is analytic inside C everywhere that f is analytic, then the only singularities of $\frac{f^{\prime}(z)}{f(z)}$ occur where f has singularities or zeros. Let $\left\{z_{j}\right\}_{j=1}^{N}$ be the zeros (simple) of f, and let $\left\{w_{k}\right\}_{k=1}^{M}$ be the simple poles of f. Then by the Residue Theorem,

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\sum_{j=1}^{N} \operatorname{Res}\left(\frac{f^{\prime}(z)}{f(z)} ; z_{j}\right)+\sum_{k=1}^{M} \operatorname{Res}\left(\frac{f^{\prime}(z)}{f(z)} ; w_{k}\right) \tag{1a}
\end{equation*}
$$

For a fixed j, since z_{j} is a simple zero, then in a neighborhood of z_{j} we have,

$$
f(z)=\left(z-z_{j}\right) g(z), \quad g(z) \neq 0, g(z) \text { is analytic. }
$$

In this neighborhood, we compute,

$$
f^{\prime}(z)=g(z)+\left(z-z_{j}\right) g^{\prime}(z) \quad \Longrightarrow \quad \frac{f^{\prime}(z)}{f(z)}=\frac{1}{z-z_{j}}+\frac{g^{\prime}(z)}{g(z)},
$$

with $g^{\prime}(z) / g(z)$ analytic in this neighborhood since g has no zeros or singularities in this neighborhood. Therefore,

$$
\begin{equation*}
\operatorname{Res}\left(\frac{f^{\prime}(z)}{f(z)} ; z_{j}\right)=1 \tag{1b}
\end{equation*}
$$

Now consider for a fixed k a similar computation in a neighborhood of w_{k}, which is a simple pole:

$$
f(z)=\frac{h(z)}{z-w_{k}}, \quad h(z) \neq 0, h(z) \text { is analytic. }
$$

Then in this neighborhood, we have

$$
f^{\prime}(z)=-\frac{h(z)}{\left(z-w_{k}\right)^{2}}+\frac{h^{\prime}(z)}{z-w_{k}} \quad \Longrightarrow \quad \frac{f^{\prime}(z)}{f(z)}=-\frac{1}{z-w_{k}}+\frac{h^{\prime}(z)}{h(z)}
$$

and $h^{\prime}(z) / h(z)$ is analytic in this neighborhod since h has no zeros or singularities in this neighborhood. Therefore,

$$
\begin{equation*}
\operatorname{Res}\left(\frac{f^{\prime}(z)}{f(z)} ; w_{k}\right)=-1 \tag{1c}
\end{equation*}
$$

Combining the three equalities (1a), (1b), and (1c) proves the desired result.

