Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2024
 Homework 4 Solutions

 Laurent Series

 Laurent Series}

Due: Friday, Feb 23, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 3.3.3
3.3.4
3.5.1, parts a) - f)
3.5.2, parts a) - c)

Submit your homework assignment on Canvas via Gradescope.
3.3.3. Given the function

$$
f(z)=\frac{z}{(z-2)(z+i)},
$$

expand $f(z)$ in a Laurent series in powers of z in the regions,
(a) $|z|<1$
(b) $1<|z|<2$
(c) $|z|>2$
3.3.4. Evaluate the integral $\oint_{C} f(z) \mathrm{d} z$ where C is the unit circle centered at the origin and $f(z)$ is given as follows,
(a) $\frac{e^{z}}{z^{3}}$
(b) $\frac{1}{z^{2} \sin z}$
(c) $\tanh z$
(d) $\frac{1}{\cos 2 z}$
(e) $e^{1 / z}$
3.5.1. Discuss the type of singularity (removable, pole and order, essential, branch, cluster, natural barrier, etc.); if the type is a pole give the strength of the pole, and give the nature (isolated or not) of all singular points associated with the following functions. Include the point at infinity.
(a) $\frac{e^{z^{2}}-1}{z^{2}}$
(b) $\frac{e^{2 z}-1}{z^{2}}$
(c) $e^{\tan z}$
(d) $\frac{z^{3}}{z^{2}+z+1}$
(e) $\frac{z^{1 / 3}-1}{z-1}$
(f) $\log \left(1+z^{1 / 2}\right)$
3.5.2. Evaluate the integral $\oint_{C} f(z) \mathrm{d} z$, where C is a unit circle centered at the origin, and where $f(z)$ is given below.
(a) $\frac{g(z)}{z-w}, g(z)$ entire
(b) $\frac{z}{z^{2}-w^{2}}$
(c) $z e^{1 / z^{2}}$

