Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2024
 Homework 3
 Complex Integration, II

Due: Friday, Feb 16, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 2.4.8
2.5.2
2.5.3
2.6.2
2.6.5
2.6.7
3.2.3

Supplement 3.1
Submit your homework assignment on Canvas via Gradescope.
2.4.8. Let C be an arc of the circle $|z|=R,(R>1)$ of angle $\pi / 3$. Show that

$$
\left|\int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z\right| \leq \frac{\pi}{3}\left(\frac{R}{R^{3}-1}\right),
$$

and deduce $\lim _{R \rightarrow \infty} \int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z=0$.
2.5.2. Use partial fractions to evaluate the following integrals $\oint_{C} f(z) \mathrm{d} z$, where C is the unit circle centered at the origin, and $f(z)$ is given by the following:
(a) $\frac{1}{z(z-2)}$
(b) $\frac{z}{z^{2}-1 / 9}$
(c) $\frac{1}{z\left(z+\frac{1}{2}\right)(z-2)}$
2.5.3. Evaluate the following integral,

$$
\oint_{C} \frac{e^{i z}}{z(z-\pi)} \mathrm{d} z,
$$

for each of the following four cases (all circle are centered at the origin; use Eq. (1.2.19) as necessary).
(a) C is the boundary of the annulus between circles of radius 1 and radius 3 .
(b) C is the boundary of the annulus between circles of radius 1 and radius 4 .
(c) C is a circle of radius R, where $R>\pi$.
(d) C is a circle of radius R, where $R<\pi$.
2.6.2. Evaluate the integrals $\oint_{C} f(z) \mathrm{d} z$ over a contour C, where C is the boundary of a square with diagonal opposite corners at $z=-(1+i) R$ and $z=(1+i) R$, where $R>a>0$, and where $f(z)$ is given by the following (use Eq. (1.2.19) in the text as necessary):
(a) $\frac{e^{z}}{z-\frac{\pi i}{4} a}$
(b) $\frac{{ }^{4}{ }^{z}}{\left(z-\frac{\pi i}{4} a\right)^{2}}$
(c) $\frac{z^{2}}{2 z+a}$
(d) $\frac{\sin z}{z^{2}}$
(e) $\frac{\cosh ^{z} z}{z}$
2.6.5. Consider two entire functions with no zeros and having a ratio equal to unity at infinity. Use Liouville's Theorem to show that they are in fact the same function.
2.6.7. Let $f(z)$ be an entire function, with $|f(z)| \leq C|z|$ for all z, where C is a constant. Show that $f(z)=A z$, where A is a constant.
3.2.3. Let the Euler number E_{n} be defined by the power series,

$$
\frac{1}{\cosh z}=\sum_{n=0}^{\infty} \frac{E_{n}}{n!} z^{n}
$$

(a) Find the radius of convergence of this series.
(b) Determine the first six Euler numbers.

Supplement 3.1. Prove the Cauchy Integral Formula: Let f be analytic in an open domain D, and let $z \in D$. Then for any non-negative integer n,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(w)}{(w-z)^{n+1}} \mathrm{~d} w
$$

where C is any simple contour in D enclosing z. You may take the $n=0,1$ versions of this formula, proven in class, as given.

