Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2024
 Homework 3 Solutions
 Complex Integration, II

Due: Friday, Feb 16, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 2.4.8
2.5.2
2.5.3
2.6.2
2.6.5
2.6.7
3.2.3

Supplement 3.1
Submit your homework assignment on Canvas via Gradescope.
2.4.8. Let C be an arc of the circle $|z|=R,(R>1)$ of angle $\pi / 3$. Show that

$$
\begin{equation*}
\left|\int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z\right| \leq \frac{\pi}{3}\left(\frac{R}{R^{3}-1}\right), \tag{1}
\end{equation*}
$$

and deduce $\lim _{R \rightarrow \infty} \int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z=0$.
Solution: We seek to use the result stating that if $|f(z)| \leq M$ over a contour C of arclength L, then,

$$
\begin{equation*}
\left|\int_{C} f(z) \mathrm{d} z\right| \leq M L . \tag{2}
\end{equation*}
$$

The length of this contour (a radius- R circular arc of angle $\pi / 3$) has value $L=R \pi / 3$. To compute M for $f(z)=\frac{1}{z^{3}+1}$, we note that

$$
\max _{z \in C}|f(z)| \leq \max _{|z|=R}|f(z)|=\max _{|z|=R}\left|\frac{1}{z^{3}+1}\right|=\frac{1}{\min _{|z|=R}\left|z^{3}+1\right|} .
$$

We compute the desired minimum via the (reverse) triangle inequality:

$$
\min _{|z|=R}\left|z^{3}+1\right| \geq \min _{|z|=R}\left|z^{3}\right|-1=R^{3}-1 .
$$

Hence, we have

$$
\max _{z \in C}|f(z)| \leq \frac{1}{R^{3}-1}:=M .
$$

Using $L=R \pi / 3$ and $M=1 /\left(R^{3}-1\right)$ in (2) proves (1). The subsequent limit is immediate:

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z \leq \lim _{R \rightarrow \infty}\left|\int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z\right| \leq \lim _{R \rightarrow \infty} \frac{\pi}{3} \frac{R}{R^{3}-1}=0 .
$$

2.5.2. Use partial fractions to evaluate the following integrals $\oint_{C} f(z) \mathrm{d} z$, where C is the unit circle centered at the origin, and $f(z)$ is given by the following:
(a) $\frac{1}{z(z-2)}$
(b) $\frac{z}{z^{2}-1 / 9}$
(c) $\frac{z^{2}-1 / 9}{z\left(z+\frac{1}{2}\right)(z-2)}$

Solution:

(a) We know that for an arbitrary complex number a,

$$
\oint_{C} \frac{1}{z-a} \mathrm{~d} z=\left\{\begin{align*}
0, & a \text { is outside } C \tag{3}\\
2 \pi i, & a \text { is inside } C
\end{align*}\right.
$$

We will use this property to evaluate the integral once we have expanded in partial fractions. $f(z)$ has poles at $z=0, z=2$, so we use the ansatz,

$$
f(z)=\frac{C_{1}}{z}+\frac{C_{2}}{z-2} .
$$

By clearing denominators, this leads to the following linear system for the unknowns C_{1}, C_{2} :

$$
\left.\begin{array}{c}
-2 C_{1}=1 \\
C_{1}+C_{2}=0
\end{array}\right\} \Longrightarrow\left(C_{1}, C_{2}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

Hence,

$$
\oint_{C} f(z) \mathrm{d} z=-\frac{1}{2} \oint_{C} \frac{1}{z} \mathrm{~d} z+\frac{1}{2} \oint_{C} \frac{1}{z-2} \mathrm{~d} z \stackrel{(3)}{=}-\pi i
$$

(b) The partial fractions ansatz in this case is,

$$
f(z)=\frac{C_{1}}{z-1 / 3}+\frac{C_{2}}{z+1 / 3},
$$

resulting in the linear system,

$$
\left.\begin{array}{l}
C_{1}+C_{2}=1, \\
C_{1}-C_{2}=0
\end{array}\right\} \Longrightarrow\left(C_{1}, C_{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

Therefore,

$$
\oint_{C} f(z) \mathrm{d} z=\frac{1}{2} \oint_{C} \frac{1}{z-1 / 3} \mathrm{~d} z+\frac{1}{2} \oint_{C} \frac{1}{z+1 / 3} \mathrm{~d} z \stackrel{(3)}{=} \pi i+\pi i=2 \pi i
$$

(c) The partial fractions ansatz for this function is,

$$
f(z)=\frac{C_{1}}{z}+\frac{C_{2}}{z+\frac{1}{2}}+\frac{C_{3}}{z-2}
$$

resulting in the linear system,

$$
\left.\begin{array}{c}
C_{1}+C_{2}+C_{2}=0 \\
-\frac{3}{2} C_{1}-2 C_{2}+\frac{1}{2} C_{3}=0 \\
-C_{1}=1,
\end{array}\right\} \Longrightarrow\left(C_{1}, C_{2}, C_{3}\right)=\left(-1, \frac{4}{5}, \frac{1}{5}\right)
$$

Therefore,

$$
\oint_{C} f(z) \mathrm{d} z=-1 \oint_{C} \frac{1}{z} \mathrm{~d} z+\frac{4}{5} \oint_{C} \frac{1}{z+1 / 2} \mathrm{~d} z+\frac{1}{5} \oint_{C} \frac{1}{z-2} \mathrm{~d} z \stackrel{(3)}{=}-2 \pi i+\frac{8}{5} \pi i=-\frac{2}{5} \pi i .
$$

2.5.3. Evaluate the following integral,

$$
\oint_{C} \frac{e^{i z}}{z(z-\pi)} \mathrm{d} z,
$$

for each of the following four cases (all circle are centered at the origin; use Eq. (1.2.19) as necessary).
(a) C is the boundary of the annulus between circles of radius 1 and radius 3 .
(b) C is the boundary of the annulus between circles of radius 1 and radius 4.
(c) C is a circle of radius R, where $R>\pi$.
(d) C is a circle of radius R, where $R<\pi$.

Solution: Before beginning the exercises, we make the following computation, which will be useful:

$$
\begin{aligned}
f(z):=\frac{e^{i z}}{z(z-\pi)} & \stackrel{\text { partial fractions }}{=}-\frac{1}{\pi} \frac{e^{i z}}{z}+\frac{1}{\pi} \frac{e^{i z}}{z-\pi} \\
& =-\frac{1}{\pi} \frac{e^{i z}}{z}+\frac{e^{i \pi}}{\pi} \frac{e^{i(z-\pi)}}{z-\pi} \\
& \text { Eqn. } \stackrel{(1.2 .19)}{=}-\frac{1}{\pi} \frac{\sum_{k=0}^{\infty}}{z}-\frac{z^{k}}{k!} \frac{1 \sum_{k=0}^{\infty} \frac{(z-\pi)^{k}}{k!}}{(z-\pi)} \\
& =-\frac{1}{\pi z}-\frac{1}{\pi(z-\pi)}+\underbrace{\frac{1}{\pi}\left(-\sum_{k=1}^{\infty} \frac{z^{k-1}}{k!}-\sum_{k=1}^{\infty} \frac{(z-\pi)^{k-1}}{k!}\right)}_{g(z)} \\
& =-\frac{1}{\pi z}-\frac{1}{\pi(z-\pi)}+g(z),
\end{aligned}
$$

where $g(z)$ is entire. Since $g(z)$ is entire, then for a curve C enclosing a connected or multiply connected region, we have,

$$
\begin{equation*}
\oint_{C} f(z) \mathrm{d} z=-\frac{1}{\pi} \oint_{C}\left(\frac{1}{z}+\frac{1}{z-\pi}\right) \mathrm{d} z+\oint_{C} g(z) \mathrm{d} z=-\frac{1}{\pi} \oint_{C}\left(\frac{1}{z}+\frac{1}{z-\pi}\right) \mathrm{d} z . \tag{4}
\end{equation*}
$$

We will use the above property to compute solutions to this problem:
(a) This curve C does not enclose the points $z=0$ or $z=\pi$, and hence f is analytic inside the enclosed region, so that by the Cauchy-Goursat Theorem,

$$
\oint_{C} f(z) \mathrm{d} z=0
$$

(b) This curve C encloses the point $z=\pi$, but not $z=0$. Hence,

$$
\begin{aligned}
& \oint_{C} f(z) \mathrm{d} z \stackrel{(4)}{=}-\frac{1}{\pi} \oint_{C} \frac{1}{z} \mathrm{~d} z-\frac{1}{\pi} \oint_{C} \frac{1}{z-\pi} \mathrm{d} z \\
& \stackrel{(3)}{=}-\frac{1}{\pi}(0+2 \pi i)=-2 i .
\end{aligned}
$$

(c) This region includes both points $z=0$ and $z=\pi$. Therefore,

$$
\begin{aligned}
& \oint_{C} f(z) \mathrm{d} z \stackrel{(4)}{=}-\frac{1}{\pi} \oint_{C} \frac{1}{z} \mathrm{~d} z-\frac{1}{\pi} \oint_{C} \frac{1}{z-\pi} \mathrm{d} z \\
& \stackrel{(3)}{=}-\frac{1}{\pi}(2 \pi i+2 \pi i)=-4 i
\end{aligned}
$$

(d) This region includes $z=0$, but not $z=\pi$. Therefore,

$$
\begin{aligned}
& \oint_{C} f(z) \mathrm{d} z \stackrel{(4)}{=}-\frac{1}{\pi} \oint_{C} \frac{1}{z} \mathrm{~d} z-\frac{1}{\pi} \oint_{C} \frac{1}{z-\pi} \mathrm{d} z \\
& \stackrel{(3)}{=}-\frac{1}{\pi}(2 \pi i+0)=-2 i .
\end{aligned}
$$

2.6.2. Evaluate the integrals $\oint_{C} f(z) \mathrm{d} z$ over a contour C, where C is the boundary of a square with diagonal opposite corners at $z=-(1+i) R$ and $z=(1+i) R$, where $R>a>0$, and where $f(z)$ is given by the following (use Eq. (1.2.19) in the text as necessary):
(a) $\frac{e^{z}}{z-\frac{\pi i}{4} a}$
(b) $\frac{{ }^{4} e^{z}}{\left(z-\frac{\pi i}{4} a\right)^{2}}$
(c) $\frac{z^{2}}{2 z+a}$
(d) $\frac{\sin z}{z^{2}}$
(e) $\frac{z^{2}}{\cos z}$

Solution: Our main tool in this exercise is the Cauchy integral formula (CIF).
(a) Let $f(z)=e^{z}$, which is entire. The point $\frac{\pi i}{4} a$ lies inside the square C, so the CIF states,

$$
\oint_{C} \frac{e^{z}}{z-\frac{\pi i}{4} a} \mathrm{~d} z=\oint_{C} \frac{f(z)}{z-\frac{\pi i}{4} a} \mathrm{~d} z=2 \pi i f\left(\frac{\pi i}{4} a\right)=2 \pi i e^{a i \pi / 4}
$$

(b) With the same $f(z)=e^{z}$ as above, the CIF for derivatives of f implies,

$$
\oint_{C} \frac{e^{z}}{\left(z-\frac{\pi i}{4} a\right)^{2}} \mathrm{~d} z=\oint_{C} \frac{f(z)}{\left(z-\frac{\pi i}{4} a\right)^{2}} \mathrm{~d} z=2 \pi i f^{\prime}\left(\frac{\pi i}{4} a\right)=2 \pi i e^{a i \pi / 4}
$$

(c) We define $f(z)=\frac{z^{2}}{2}$, which is entire, so that,

$$
\oint_{C} \frac{z^{2}}{2 z+a} \mathrm{~d} z=\oint_{C} \frac{f(z)}{z+a / 2} \mathrm{~d} z \stackrel{\mathrm{CIF}}{=} 2 \pi i f(-a / 2)=\frac{a^{2} \pi i}{4}
$$

where we have also used the fact that $-a / 2$ lies inside C.
(d) Defining $f(z)=\sin z$, which is entire, then

$$
\oint_{C} \frac{\sin z}{z^{2}} \mathrm{~d} z=\oint_{C} \frac{f(z)}{z^{2}} \mathrm{~d} z \stackrel{\mathrm{CIF}}{=} 2 \pi i f^{\prime}(0)=2 \pi i
$$

(e) Defining $f(z)=\cosh z$, which is entire, we have,

$$
\oint_{C} \frac{\cosh z}{z} \mathrm{~d} z=\oint_{C} \frac{f(z)}{z} \mathrm{~d} z \stackrel{\mathrm{CIF}}{=} 2 \pi i f(0)=2 \pi i
$$

2.6.5. Consider two entire functions with no zeros and having a ratio equal to unity at infinity. Use Liouville's Theorem to show that they are in fact the same function.

Solution: Let f_{1} and f_{2} be the functions in question, and define,

$$
g(z)=\frac{f_{1}(z)}{f_{2}(z)}
$$

which itself is entire since f_{2} has no zeros. Since $\lim _{z \rightarrow \infty} g(z)=1$, then there is some $R \geq 0$ such that

$$
|z|>R \Longrightarrow|g(z)-1|<\frac{1}{2}
$$

which in particular means that,

$$
\begin{equation*}
|z|>R \Longrightarrow|g(z)|<\frac{3}{2} \tag{5a}
\end{equation*}
$$

Now on $\overline{B_{R}(0)}$ (the closed origin-centered ball of radius R), g is analytic, and in particular continuous over this closed and bounded set, so that

$$
\begin{equation*}
M:=\max _{z \in \bar{B}_{R}(0)}|g(z)|<\infty, \tag{5b}
\end{equation*}
$$

i.e., g is bounded on $\overline{B_{R}(0)}$. Combining (5a) and (5b) implies,

$$
\max _{z \in \mathbb{C}}|g(z)| \leq \max \left\{\frac{3}{2}, M\right\}<\infty
$$

i.e., g is bounded on \mathbb{C} and is analytic on \mathbb{C}. By Liouville's theorem, $g(z)$ is constant, and in particular $\lim _{z \rightarrow \infty} g(z)=1$ implies that $g(z)=1$ over \mathbb{C}, i.e., $f_{1}(z)=f_{2}(z)$ over \mathbb{C}.
2.6.7. Let $f(z)$ be an entire function, with $|f(z)| \leq C|z|$ for all z, where C is a constant. Show that $f(z)=A z$, where A is a constant.

Solution: Our main goal will be to show that $f^{\prime \prime} \equiv 0$. Fix an arbitrary $z \in \mathbb{C}$, and let C be a z-centered circle of radius $R>|z|$. The Cauchy Integral formula for the second derivative of f reads,

$$
f^{\prime \prime}(z)=\frac{2!}{2 \pi i} \oint_{C} \frac{f(w)}{(w-z)^{3}} \mathrm{~d} w .
$$

Using $|f(w)| \leq C|w|$ and parameterizing the integral over the circle with $w(\theta)=z+R e^{i \theta}$, we
have,

$$
\begin{aligned}
\left|f^{\prime \prime}(z)\right| & \leq \frac{1}{\pi i} \oint_{C} \frac{|f(w)|}{|w-z|^{3}}|\mathrm{~d} w| \\
& \leq \frac{C}{\pi i} \oint_{C} \frac{|w|}{|w-z|^{3}}|\mathrm{~d} w| \\
& =\frac{C}{\pi i} \int_{0}^{2 \pi} \frac{\left|z+R e^{i \theta}\right|}{R^{3}} R \mathrm{~d} \theta \\
& |z|<R \\
& \leq \frac{C}{\pi R^{2}} \int_{0}^{2 \pi} 2 R \mathrm{~d} \theta=\frac{4 C}{R}
\end{aligned}
$$

This bound is true for every $R>|z|$, i.e., $\left|f^{\prime \prime}(z)\right|<\epsilon$ for every $\epsilon>0$, implying that $\left|f^{\prime \prime}(z)\right|=$ $f^{\prime \prime}(z)=0$. Since z was arbitrary, we have $f^{\prime \prime}(z)=0$ for all $z \in \mathbb{C}$. Therefore, $f(z)=A z+B$ for some constants A and B.
The constant B must be zero since $|f(z)| \leq C|z|$ implies that $|f(0)| \leq 0$, i.e., $|B| \leq 0$, so $B=0$. Hence, $f(z)=A z$.
3.2.3. Let the Euler number E_{n} be defined by the power series,

$$
\frac{1}{\cosh z}=\sum_{n=0}^{\infty} \frac{E_{n}}{n!} z^{n}
$$

(a) Find the radius of convergence of this series.
(b) Determine the first six Euler numbers.

Solution:

(a) Since 1 and $\cosh z$ are both entire functions, then $1 / \cosh z$ fails to be analytic only where $\cosh z=0$. The roots of this function correspond to the roots of the equation,

$$
e^{z}+e^{-z}=0 \xrightarrow{e^{z} \neq 0} e^{2 z}+1=0 .
$$

i.e., $e^{2 z}=-1$. Writing this in terms of logarithms, we have,

$$
z=\frac{1}{2} \log -1=\frac{1}{2}(-i \pi+i 2 \pi k)=-\frac{i \pi}{2}+i k \pi,
$$

for every $k \in \mathbb{Z}$. In particular, the two roots that are closest to the origin are,

$$
z= \pm \frac{i \pi}{2}
$$

In other words, $1 / \cosh z$ is analytic on $|z|<R_{0}$ for every $R_{0}<\pi / 2$. Hence, the radius of convergence for this power/Taylor series is $R=\pi / 2$.
(b) Within the region of convergence of the series, we rewrite it as,

$$
\begin{aligned}
1 & =\cosh z \sum_{n=0}^{\infty} \frac{E_{n}}{n!} z^{n} \\
& =\left(\sum_{k=0}^{\infty} c_{k} z^{k}\right)\left(\sum_{n=0}^{\infty} \frac{E_{n}}{n!} z^{n}\right) \\
& =\sum_{n=0}^{\infty} d_{n} z^{n},
\end{aligned}
$$

where

$$
c_{k}=\left\{\begin{array}{cl}
\frac{1}{k!}, & k \text { even } \\
0, & k \text { odd }
\end{array} \quad d_{n}=\sum_{k=0}^{n} \frac{E_{k}}{k!} c_{n-k} .\right.
$$

Note that since this must be the power series for the function 1, then

$$
d_{n}= \begin{cases}1, & n=0 \\ 0, & n \geq 1\end{cases}
$$

Hence, we can determine the first 6 Euler numbers by equating the two previous expressions for d_{n} :

$$
\begin{aligned}
& 1=d_{0}=\frac{E_{0}}{0!} c_{0}=E_{0}, \\
& 0=d_{1}=\frac{E_{0}}{0!} c_{1}+\frac{E_{1}}{1!} c_{0}=E_{1} \\
& 0=d_{2}=\frac{E_{0}}{0!} c_{2}+\frac{E_{1}}{1!} c_{1}+\frac{E_{2}}{2!} c_{0}=\frac{E_{0}}{2}+\frac{E_{2}}{2} \\
& 0=d_{3}=\frac{E_{0}}{0!} c_{3}+\frac{E_{1}}{1!} c_{2}+\frac{E_{2}}{2!} c_{1}+\frac{E_{3}}{3!} c_{0}=\frac{E_{1}}{2}+\frac{E_{3}}{6} \\
& 0=d_{4}=\frac{E_{0}}{0!} c_{4}+\frac{E_{1}}{1!} c_{3}+\frac{E_{2}}{2!} c_{2}+\frac{E_{3}}{3!} c_{1}+\frac{E_{4}}{4!} c_{0}=\frac{E_{0}}{24}+\frac{E_{2}}{4}+\frac{E_{4}}{24} \\
& 0=d_{5}=\frac{E_{0}}{0!} c_{5}+\frac{E_{1}}{1!} c_{4}+\frac{E_{2}}{2!} c_{3}+\frac{E_{3}}{3!} c_{2}+\frac{E_{4}}{4!} c_{1}+\frac{E_{5}}{5!} c_{0}=\frac{E_{1}}{24}+\frac{E_{3}}{12}+\frac{E_{5}}{120}
\end{aligned}
$$

This is a lower triangular linear system for the unknowns ($E_{0}, E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$), whose solution is:

$$
\left(\begin{array}{l}
E_{0} \\
E_{1} \\
E_{2} \\
E_{3} \\
E_{4} \\
E_{5}
\end{array}\right)=\left(\begin{array}{r}
1 \\
0 \\
-1 \\
0 \\
5 \\
0
\end{array}\right)
$$

Supplement 3.1. Prove the Cauchy Integral Formula: Let f be analytic in an open domain D, and let $z \in D$. Then for any non-negative integer n,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(w)}{(w-z)^{n+1}} \mathrm{~d} w
$$

where C is any simple contour in D enclosing z. You may take the $n=0,1$ versions of this formula, proven in class, as given.

Solution: We will proceed by induction over n. The initial case, $n=0$, is given, so we must only establish the inductive step. Suppose the formula holds for some n at $z \in D$. Then we have for some $\eta \in D$ in a neighborhood of z,

$$
\begin{align*}
\frac{f^{(n)}(\eta)-f^{(n)}(z)}{\eta-z} & =\frac{n!}{2 \pi i(\eta-z)} \oint_{C} f(w)\left[\frac{1}{(w-\eta)^{n+1}}-\frac{1}{(w-z)^{n+1}}\right] \mathrm{d} w \\
& =\frac{n!}{2 \pi i(\eta-z)} \oint_{C} f(w)\left[\frac{(w-z)^{n+1}-(w-\eta)^{n+1}}{(w-z)^{n+1}(w-\eta)^{n+1}}\right] \mathrm{d} w \tag{6}
\end{align*}
$$

where we take the contour C as, for example, a circular contour enclosing both w and z still contained in D. Using the formula,

$$
a^{n+1}-b^{n+1}=(a-b)\left(\sum_{j=0}^{n} a^{n-j} b^{j}\right)
$$

we have,

$$
\frac{(w-z)^{n+1}-(w-\eta)^{n+1}}{(w-z)^{n+1}(w-\eta)^{n+1}}=\frac{(\eta-z)\left(\sum_{j=0}^{n}(w-z)^{n-j}(w-\eta)^{j}\right)}{(w-z)^{n+1}(w-\eta)^{n+1}}
$$

Using this in (6) and simplifying, we obtain,

$$
\frac{f^{(n)}(\eta)-f^{(n)}(z)}{\eta-z}=\frac{n!}{2 \pi i} \oint_{C} f(w)\left[\frac{\left(\sum_{j=0}^{n}(w-z)^{n-j}(w-\eta)^{j}\right)}{(w-z)^{n+1}(w-\eta)^{n+1}}\right] \mathrm{d} w
$$

Finally, we take the limit as η approaches z (say over any path that remains some bounded distance away from C)):

$$
\begin{aligned}
\lim _{\eta \rightarrow z} \frac{f^{(n)}(\eta)-f^{(n)}(z)}{\eta-z} & =\frac{n!}{2 \pi i} \oint_{C} f(w) \lim _{\eta \rightarrow z}\left[\frac{\left(\sum_{j=0}^{n}(w-z)^{n-j}(w-\eta)^{j}\right)}{(w-z)^{n+1}(w-\eta)^{n+1}}\right] \mathrm{d} w \\
& =\frac{n!}{2 \pi i} \oint_{C} f(w) \frac{(n+1)(w-z)^{n}}{(w-z)^{2 n+2}} \mathrm{~d} w \\
& =\frac{(n+1)!}{2 \pi i} \oint_{C} \frac{f(w)}{(w-z)^{n+2}} \mathrm{~d} w
\end{aligned}
$$

and note that this last integral is well-defined since the integrand is continuous and bounded over the compact contour C. The step of taking the limit under the integral can be formally justified by noting that both $|w-z|$ and $|w-\eta|$ are both bounded below by the (strictly positive) distance from w to C, and hence the integrand is uniformly bounded as $\eta \rightarrow z$. Therefore, we may use the bounded/dominated convergence theorem, say over the real and imaginary parts of the integral, to justify taking the limit under the integral. Finally, since this limit by definition is $f^{(n+1)}(z)$, we have completed the inductive step, and the proof.

