DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH
Applied Complex Variables and Asymptotic Methods
MATH 6720 — Section 001 — Spring 2024
Homework 3 Solutions
Complex Integration, I1

Due: Friday, Feb 16, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 2.4.8
2.5.2
2.5.3
2.6.2
2.6.5
2.6.7
3.2.3
Supplement 3.1

Submit your homework assignment on Canvas via Gradescope.

2.4.8. Let C be an arc of the circle |z| = R, (R > 1) of angle 7/3. Show that

dz s R
——dz| < = [ =———— 1
/Cz3+1 Z_3<R3—1>’ (1)

and deduce limg 0 [, Z3d—j1 dz =0.

Solution: We seek to use the result stating that if |f(z)| < M over a contour C of arclength

L, then,
/ f(2) dz
C

The length of this contour (a radius-R circular arc of angle 7/3) has value L = Rx/3. To

< ML. 2)

compute M for f(z) = zg—lﬂ, we note that
7] < max 1) : 1
max |f(z max | f(z)| = max = :
zeC  |2|I=R |z|=R 23 +1 min‘z|:R ‘2’3 + 1’

We compute the desired minimum via the (reverse) triangle inequality:

min [2® + 1| > min [2*| - 1= R? - 1.
|z|=R |z|=R

Hence, we have

max | £(2)] < =

= M.
zeC R3—1
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(2) proves (1). The subsequent limit is immediate:

Using L = Rr/3 and M = 1/(R3 — 1)
d d

® dz< lim / L)< T

c B3 +1 R—oo 3 R3 — 1

lim 3
R—oo Jo 2 R—o00

2.5.2. Use partial fractions to evaluate the following integrals ffC f(2)dz, where C is the unit

circle centered at the origin, and f(z) is given by the following:

(a) I

z(z;2)
(b) =1

©) e

3)

j{ 1 0, a is outside C'
dz = . ..
C 2mi, a is inside C

Z—a

Solution:
(a) We know that for an arbitrary complex number a,

We will use this property to evaluate the integral once we have expanded in partial

fractions. f(z) has poles at z = 0,z = 2, so we use the ansatz,
C1 Co
f(Z) - 7 + 5 — 2

By clearing denominators, this leads to the following linear system for the unknowns

Cl,CQ:
—20) =1, (11
Cl+0220}:>(01702)_< 272>

Hence,

fcf(z)dz:—;y{1dz+;j€2i2dz(:)—m

The partial fractions ansatz in this case is,
Ch Co

U Y P F ST

resulting in the linear system,
Ci1+Cy =1, (11
Ci—Cy=0 }:>(Cl’02)_ <2’2 '

Therefore,

1 1 1 :
% dz@m—i—ﬂ'i:%ﬁ
CZ+1/3

fcf(z)dzZchz_ll/gdHQ

(¢) The partial fractions ansatz for this function is,
Cy Cy Cs
f(z) = z +z+% +z—2’
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resulting in the linear system,

Ci+Ca+Cy=0

4 1
—%Cl—QC’Q—F%Cg:O = (C1,C5,C3) = <_175a5>
-C1 =1,

Therefore,

1 4 1 1 1 2
Y{f(z)dz:—lfdz—l— fdz—l—y{ dz(:3)—27ri—i—§m':—f7ri.
C Cc < 5 CZ+1/2 5 CZ—2 5) 5

2.5.3. Evaluate the following integral,

eiz
—d
iéz(z—w -

for each of the following four cases (all circle are centered at the origin; use Eq. (1.2.19) as
necessary).

(a) C is the boundary of the annulus between circles of radius 1 and radius 3.
(b) C is the boundary of the annulus between circles of radius 1 and radius 4.
(c) C is a circle of radius R, where R > .

(d) C is a circle of radius R, where R < 7.

Solution: Before beginning the exercises, we make the following computation, which will be
useful:

f(Z) L e partial fractions 1e* i 1 e*”
o z2(z—m) Tz WZ—T
1 et% el ei(sz)

™ Z m™ Z—T
oo 2k oo (z—m)*
Ban. (1219) 1357205 12 k=0 -
T 2 T (z—m)
1 1 1 S &K (z—m)F!
9(2)
1 1

Trr wa—m) +9(2),

where g(z) is entire. Since g(z) is entire, then for a curve C' enclosing a connected or multiply
connected region, we have,

jéf(z)dz:—i?i<i+ziw) dz+7fcg(z)dz —1fc(1+ ! >dz. (@)

s z Z— T

We will use the above property to compute solutions to this problem:

(a) This curve C' does not enclose the points z = 0 or z = 7, and hence f is analytic inside
the enclosed region, so that by the Cauchy-Goursat Theorem,

fc f(z)dz = 0.
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(b) This curve C encloses the point z = 7, but not z = 0. Hence,

R e

1
S 20+ 2mi) = —2i.
0 i) 1

=

(c¢) This region includes both points z = 0 and z = m. Therefore,

1 1 1
jgf 7{ dz—j{ dz
o ™ Jo R — T

@ _L (o 4 2mi) = —4i.
™

=

(d) This region includes z = 0, but not z = w. Therefore,

jéf jézdzljiziwdz

®_Z (2772 +0) =

=

2.6.2. Evaluate the integrals fc z) dz over a contour C', where C'is the boundary of a square
with diagonal opposite corners at z = —(1 + )R and z = (1 + )R, where R > a > 0, and
where f(z) is given by the following (use Eq. (1.2.19) in the text as necessary):

(2) 5,

(b) —=
(Zg%“)g

() 2;+a

(4) =2

) cosh z

z

Solution: Our main tool in this exercise is the Cauchy integral formula (CIF).
(a) Let f(z) = e*, which is entire. The point 7a lies inside the square C, so the CIF states,

?{ eZA dz = f< ) dz—27rzf( - > — Oie®iT/4,
c 4

i _ m
z—Ta cz 4a

(b) With the same f(z) = e* as above, the CIF for derivatives of f implies,

% % dz = 7{ L)Q dz = 27”~f/ <7T2a> — 27Ti6ai7r/4.
i i 4
C(z——a) c(z_fa)

4 4

2

(c) We define f(z) = %, which is entire, so that,

2 .
$ et f 2y e S amisca =
c2z+a Cz+a/2 4

where we have also used the fact that —a/2 lies inside C.
(d) Defining f(z) = sin z, which is entire, then

7{ Sinzdz: f(j) » @ on if'(0) = 2mi
C c <

22
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(e) Defining f(z) = cosh z, which is entire, we have,

%COSthZZf f(z) dy & 2mif(0) = 2mi
C c

z z

2.6.5. Consider two entire functions with no zeros and having a ratio equal to unity at infinity.
Use Liouville’s Theorem to show that they are in fact the same function.

Solution: Let fi and fo be the functions in question, and define,

_ fi(z)
fa(z)’

which itself is entire since fo has no zeros. Since lim,_,o, g(z) = 1, then there is some R > 0
such that

9(2)

1
2> R = lg(z)—1]< 5,
which in particular means that,

3
<

|z| >R = |g(2) 3"

(5a)

Now on Bpr(0) (the closed origin-centered ball of radius R), ¢ is analytic, and in particular
continuous over this closed and bounded set, so that

M = max |g(2)| < oo, (5b)
ZEBR(O)

i.e., g is bounded on Bgr(0). Combining (5a) and (5b) implies,

3
< - M
max|g()] < max{2, } < o0,

i.e., g is bounded on C and is analytic on C. By Liouville’s theorem, g(z) is constant, and in
particular lim,_, g(2) = 1 implies that g(z) = 1 over C, i.e., fi(z) = fa(z) over C.

2.6.7. Let f(z) be an entire function, with |f(z)| < C|z| for all z, where C' is a constant. Show
that f(z) = Az, where A is a constant.

Solution: Our main goal will be to show that f” = 0. Fix an arbitrary z € C, and let C be
a z-centered circle of radius R > |z|. The Cauchy Integral formula for the second derivative of

f reads,
oy 2 f(w)
(=) %C ( 5 dw.

2mi w— z)

Using |f(w)| < C|w| and parameterizing the integral over the circle with w(f) = z + Re'?, we
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have,

o1 W)

< AT
<2 g L aw
c o qul
mi Jo T — 2 21

2w i6
— C/ MR do
™ Jo R3
<k C [ 4C
< — 2Rd0 = —
- 7'1'.R2 0 R

This bound is true for every R > |z|, i.e., |f”(z)| < € for every € > 0, implying that |f”(z)| =

f"(z) = 0. Since z was arbitrary, we have f”(z) = 0 for all z € C. Therefore, f(z) = Az + B
for some constants A and B.

The constant B must be zero since |f(z)| < C|z| implies that |f(0)] < 0, i.e., |B| < 0, so
B = 0. Hence, f(z) = Az.

3.2.3. Let the Euler number E, be defined by the power series,

o
- E, ,
= g —2z".
cosh z n!
n=0

(a) Find the radius of convergence of this series.
(b) Determine the first six Euler numbers.

Solution:

(a) Since 1 and cosh z are both entire functions, then 1/ cosh z fails to be analytic only where
cosh z = 0. The roots of this function correspond to the roots of the equation,

Frer=0 7% 210
i.e., €2* = —1. Writing this in terms of logarithms, we have,

1 1 i
2= Slog—1= o (—im + i2mh) = —g + ik,
for every k € Z. In particular, the two roots that are closest to the origin are,

L
=4+ —.
T

In other words, 1/ cosh z is analytic on |z| < Ry for every Ry < 7/2. Hence, the radius
of convergence for this power/Taylor series is R = 7/2.
(b) Within the region of convergence of the series, we rewrite it as,

0 e’} En .
- (Ze) (S5)
:idnz”,

n=0
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where
1 n E
o — 4 ED k even 4 — Er
k 0, kodd "k ek

Note that since this must be the power series for the function 1, then

1, n=0
dn_{ 0, n>1.

Hence, we can determine the first 6 Euler numbers by equating the two previous expres-
sions for d,;:

P T,
0=dy = %014-11?‘ =F

0=ds = %034‘%624-3 +%COZ%+%

0=ds = %65—%&64—%@034-%02—&-]5401—1—?? %+%+1E2750

This is a lower triangular linear system for the unknowns (Ey, E1, Fs, E3, E4, E5), whose
solution is:

Eo 1
E 0
B | | -1
Es [T o
Eq 5
Es 0

Supplement 3.1. Prove the Cauchy Integral Formula: Let f be analytic in an open domain
D, and let z € D. Then for any non-negative integer n,

n! w
f(n)( z) = — L)l

2ri Jo (w— z)nt
where C' is any simple contour in D enclosing z. You may take the n = 0,1 versions of this
formula, proven in class, as given.

dw

Solution: We will proceed by induction over n. The initial case, n = 0, is given, so we must
only establish the inductive step. Suppose the formula holds for some n at z € D. Then we
have for some n € D in a neighborhood of z,

FOm) G N .
e _2ﬂi(n—2)7if(>[(w—n)"“ <w—z>n+1}d

R O SRV L Kl Calltl/) il RO
- w5 1) [ | ¢ )
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where we take the contour C' as, for example, a circular contour enclosing both w and z still
contained in D. Using the formula,

o™t — prtl = (a —b) Zan_jbj )
=0

we have,

(w— 2y — (-t (1= 2) (Sjp(w =2 w =)
(w _ z)n—i—l(w _ n)n—O—l - (w _ z)n—i—l(w _ n)n—O—l

Using this in (6) and simplifying, we obtain,

ﬂWm_ﬂw@_7u%fW)(Z?wvzwﬁwmﬂ o
C

n—z 27 (w — z)nH (w —n)ntl

Finally, we take the limit as n approaches z (say over any path that remains some bounded
distance away from C)):

(Zow = 23w — )7

) - ) _ |
%;n; n—z T 2mi 740 J(w) Tl}g (w — 2)" T (w — y)ntl dw
WL D)

= om c (w) (w — z)2n+2

_ (n+1)!]{ ACON
o (w

270 —z)nt2

and note that this last integral is well-defined since the integrand is continuous and bounded
over the compact contour C. The step of taking the limit under the integral can be formally
justified by noting that both |w — z| and |w — n| are both bounded below by the (strictly
positive) distance from w to C, and hence the integrand is uniformly bounded as n — z.
Therefore, we may use the bounded/dominated convergence theorem, say over the real and
imaginary parts of the integral, to justify taking the limit under the integral. Finally, since
this limit by definition is f("*1)(z), we have completed the inductive step, and the proof.
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