DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Applied Complex Variables and Asymptotic Methods MATH 6720 – Section 001 – Spring 2024 Homework 2 Solutions Analytic functions and integration, I

Due: Friday, Feb 2, 2024

Below, problem C in section A.B is referred to as exercise A.B.C. Text: *Complex Variables: Introduction and Applications*, Ablowitz & Fokas,

Exercises: 2.1.1 2.1.5 2.2.1 2.2.2 2.2.3 2.4.1 2.4.4 Submit your homework assignment on Canvas via Gradescope.

2.1.1. Which of the following satisfy the Cauchy-Riemann (C-R) equations? If they satisfy the C-R equations, give the analytic function of z.

- (a) f(x,y) = x iy + 1(b) $f(x,y) = y^3 - 3x^2y + i(x^3 - 3xy^2 + 2)$
- (c) $f(x,y) = e^y(\cos x + i\sin y)$

2.1.5. Let f(z) be analytic in some domain. Show that f(z) is necessarily a constant if either the function $\overline{f(z)}$ is analytic or f(z) assumes only pure imaginary values in the domain.

2.2.1. Find the location of the branch points and discuss possible branch cuts for the following functions:

(a) $\frac{1}{(z-1)^{1/2}}$ (b) $(z+1-2i)^{1/4}$ (c) $2\log z^2$ (d) $z^{\sqrt{2}}$

2.2.2. Determine all possible values and give the principal value of the following numbers (put in the form x + iy):

(a) $i^{1/2}$ (b) $\frac{1}{(1+i)^{1/2}}$ (c) $\log(1+\sqrt{3}i)$ (d) $\log i^3$ (e) $i^{\sqrt{3}}$ (f) $\sin^{-1}\frac{1}{\sqrt{2}}$ **2.2.3.** Solve for *z*:

- (a) $z^5 = 1$
- (b) $3 + 2e^{z-i} = 1$
- (c) $\tan z = 1$

2.4.1. From the basic definition of complex integration, evaluate the integral $\oint_C f(z) dz$, where C is the parameterized unit circle enclosing the origin, $C: x(t) = \cos t, y(t) = \sin t$ or $z = e^{it}$, and where f(z) is given by,

- (a) z^2
- (b) \overline{z}^2
- (c) $\frac{z+1}{z^2}$

2.4.4. Use the principal branch of $\log z$ and $z^{1/2}$ to evaluate,

- (a) $\int_{-1}^{1} \log z \, dz$ (b) $\int_{-1}^{1} z^{1/2} \, dz$