# Department of Mathematics, University of Utah 

Applied Complex Variables and Asymptotic Methods
MATH 6720 - Section 001 - Spring 2024
Homework 2 Solutions
Analytic functions and integration, I
Due: Friday, Feb 2, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 2.1.1
2.1.5
2.2.1
2.2.2
2.2.3
2.4.1
2.4.4

Submit your homework assignment on Canvas via Gradescope.
2.1.1. Which of the following satisfy the Cauchy-Riemann (C-R) equations? If they satisfy the C-R equations, give the analytic function of $z$.
(a) $f(x, y)=x-i y+1$
(b) $f(x, y)=y^{3}-3 x^{2} y+i\left(x^{3}-3 x y^{2}+2\right)$
(c) $f(x, y)=e^{y}(\cos x+i \sin y)$
2.1.5. Let $f(z)$ be analytic in some domain. Show that $f(z)$ is necessarily a constant if either the function $\overline{f(z)}$ is analytic or $f(z)$ assumes only pure imaginary values in the domain.
2.2.1. Find the location of the branch points and discuss possible branch cuts for the following functions:
(a) $\frac{1}{(z-1)^{1 / 2}}$
(b) $(z+1-2 i)^{1 / 4}$
(c) $2 \log z^{2}$
(d) $z^{\sqrt{2}}$
2.2.2. Determine all possible values and give the principal value of the following numbers (put in the form $x+i y$ ):
(a) $i^{1 / 2}$
(b) $\frac{1}{(1+i)^{1 / 2}}$
(c) $\log (1+\sqrt{3} i)$
(d) $\log i^{3}$
(e) $i^{\sqrt{3}}$
(f) $\sin ^{-1} \frac{1}{\sqrt{2}}$
2.2.3. Solve for $z$ :
(a) $z^{5}=1$
(b) $3+2 e^{z-i}=1$
(c) $\tan z=1$
2.4.1. From the basic definition of complex integration, evaluate the integral $\oint_{C} f(z) \mathrm{d} z$, where $C$ is the parameterized unit circle enclosing the origin, $C: x(t)=\cos t, y(t)=\sin t$ or $z=e^{i t}$, and where $f(z)$ is given by,
(a) $z^{2}$
(b) $\bar{z}^{2}$
(c) $\frac{z+1}{z^{2}}$
2.4.4. Use the principal branch of $\log z$ and $z^{1 / 2}$ to evaluate,
(a) $\int_{-1}^{1} \log z \mathrm{~d} z$
(b) $\int_{-1}^{1} z^{1 / 2} \mathrm{~d} z$

