Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2024
 Homework 2 Solutions
 Analytic functions and integration, I

Due: Friday, Feb 2, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 2.1.1
2.1.5
2.2.1
2.2.2
2.2.3
2.4.1
2.4.4

Submit your homework assignment on Canvas via Gradescope.
2.1.1. Which of the following satisfy the Cauchy-Riemann (C-R) equations? If they satisfy the C-R equations, give the analytic function of z.
(a) $f(x, y)=x-i y+1$
(b) $f(x, y)=y^{3}-3 x^{2} y+i\left(x^{3}-3 x y^{2}+2\right)$
(c) $f(x, y)=e^{y}(\cos x+i \sin y)$

Solution:

(a) With $u(x, y)=x+1$ and $v(x, y)=-y$, the C-R equations read,

$$
\begin{aligned}
& u_{x}=1 \neq-1=v_{y} \\
& u_{y}=0=0=-v_{x} .
\end{aligned}
$$

Hence, the C-R equations are not satisfied.
(b) With $u(x, y)=y^{3}-3 x^{2} y$ and $v(x, y)=x^{3}-3 x y^{2}+2$, the C-R equations read,

$$
\begin{aligned}
u_{x}=-6 x y & =-6 x y=v_{y} \\
u_{y}=3 y^{2}-3 x^{2} & =-3 x^{2}+3 y^{2}=-v_{x} .
\end{aligned}
$$

Since u and v satisfy the C-R equations (everywhere), then f is analytic as a function of z. Since

$$
i z^{3}=i(x+i y)^{3}=i x^{3}+y^{3}-3 x^{2} y-i 3 x y^{2}=f(x, y)-2 i,
$$

then we conclude that $f(x, y)=i z^{3}+2 i$.
(c) With $u(x, y)=e^{y} \cos x$ and $v(x, y)=e^{y} \sin y$, the C-R equations read,

$$
\begin{array}{rl}
u_{x}=-e^{y} \sin x & e^{y}(\sin y+\cos y)=v_{y} \\
u_{y}=e^{y} \cos x & 0=-v_{x} .
\end{array}
$$

It is unclear if the two expressions on each line are equal: to determine this, the second set of equations requires

$$
e^{y} \cos x=0 \Longrightarrow \cos x=0 \Longrightarrow x=\frac{(2 k+1) \pi}{2}, k \in \mathbb{Z}
$$

The first set of equations requires

$$
\sin y+\cos y=(-1)^{k+1}
$$

Therefore:

$$
\begin{aligned}
& k \text { odd } \Longrightarrow \sin y=1 \text { or } \cos y=1 \Longrightarrow y=\frac{(4 n+1) \pi}{2}, 2 n \pi, n \in \mathbb{Z} . \\
& k \text { even } \Longrightarrow \sin y=-1 \text { or } \cos y=-1 \Longrightarrow y=\frac{(4 n+3) \pi}{2},(2 n+1) \pi, n \in \mathbb{Z}
\end{aligned}
$$

In all of these cases, any (x, y) satisfying the C-R equations is an isolated point, but f is not differentiable in any neighborhood around these points, so f is not analytic.
2.1.5. Let $f(z)$ be analytic in some domain. Show that $f(z)$ is necessarily a constant if either the function $\overline{f(z)}$ is analytic or $f(z)$ assumes only pure imaginary values in the domain.

Solution: Consider first the second case, where we assume both that f is analytic and assumes only purely imaginary values, i.e., $f(z)=i v(x, y)$. By the C-R equations,

$$
\begin{aligned}
& u_{x}=0=v_{y} \\
& u_{y}=0=-v_{x},
\end{aligned}
$$

so that $v_{x}=v_{y}=0$, hence $v(x, y)=C$, and so $f(x, y)=i C$, where C must be real since f is purely imaginary-valued.
In the second case, we assume that both $f(z)$ and $\overline{f(z)}$ are analytic. Then with $f(z)=u+i v$ and $\overline{f(z)}=u-i v$, the C-R equations applied to both functions implies,

$$
\begin{array}{ll}
u_{x}=v_{y}, & u_{y}=-v_{x} \\
u_{x}=-v_{y}, & u_{y}=v_{x},
\end{array}
$$

where the first row contains the C-R conditions applied to f, and the second row contains the C-R conditions applied to \bar{f}. The first column of equalities implies,

$$
v_{y}=u_{x}=0,
$$

and the second column implies,

$$
v_{x}=u_{y}=0 .
$$

I.e., $u_{x}=u_{y}=0$ and $v_{x}=v_{y}=0$, so that both u and v must be constant. Thus, $f(z)=u+i v$ is also constant.
2.2.1. Find the location of the branch points and discuss possible branch cuts for the following functions:
(a) $\frac{1}{(z-1)^{1 / 2}}$
(b) $(z+1-2 i)^{1 / 4}$
(c) $2 \log z^{2}$
(d) $z^{\sqrt{2}}$

Solution:

(a) The branch points of this function are at $z=1, \infty$. To see why $z=1$ is a branch point, consider $z=1+\epsilon e^{i \theta}$ for a fixed $\epsilon>0$ and for $\theta \in[0,2 \pi]$. Then:

$$
\frac{1}{(z-1)^{1 / 2}}=(z-1)^{-1 / 2}=\left(\epsilon e^{i \theta}\right)^{-1 / 2}=\frac{1}{\sqrt{\epsilon}} e^{-i \theta / 2)} .
$$

As θ sweeps from $0 \rightarrow 2 \pi$, the function sweeps from $\frac{1}{\sqrt{\epsilon}}$ to $\frac{1}{\sqrt{\epsilon}} e^{-i \pi}=-\frac{1}{\sqrt{\epsilon}}$, which is a different value. Hence, $z=1$ is a branch point. To establish that $z=\infty$ is a branch point, we use the transformation $z-1=1 / t$, so the function becomes \sqrt{t}, which we already know has a branch point at $t=0$, i.e., $z=\infty$.
Any simple curve connecting $z=1$ to $z=\infty$ can serve as a branch cut. E.g., the positive real axis to the right of 1 , i.e., $\operatorname{Re}(z) \geq 1, \operatorname{Im}(z)=0$, is a particularly simple choice.
(b) The branch points of this function are $z=-1+2 i, \infty$. To establish this, we first consider a mapped version of the function:

$$
f(w)=w^{1 / 4}, \quad w=z+1-2 i .
$$

Note that $f(w)$ has branch points at $w=0$ and $w=\infty$ (as shown in the text), which correspond to $z=-1+2 i$ and $z=\infty$, as desired.
Again, any simple curve connecting $z=-1+2 i$ to $z=\infty$ can seve as a branch cut, and one simple choice can be the semi-infinite ray defined by $\operatorname{Re}(z) \geq-1, \operatorname{Im}(z)=2$.
(c) The branch points of this function are $z=0, \infty$. To establish this for $z=0$, take $z=\epsilon e^{i \theta}$ for a small $\epsilon>0$ and $\theta \in[0,2 \pi]$. At $\theta=0$ the function takes value $4 \log \epsilon$. As θ sweeps from 0 to 2π, the function takes the value

$$
2 \log \left(\epsilon e^{i 2 \pi}\right)=4 \log \epsilon+4 i \pi \neq 4 \log \epsilon,
$$

showing a discontinuity. Thus, $z=0$ is a branch point. To establish that $z=\infty$ is a branch point, we make the transformation $w=1 / z$, so that the new function under consideration is

$$
f(w)=-2 \log \left(w^{2}\right)=2 \log \left(z^{2}\right)
$$

By the same arguments as above, $f(w)$ has a branch point at $w=0$, i.e., the original function has a branch point at $z=\infty$.
Any simple curve connecting $z=0$ to $z=\infty$ can serve as a branch cut. A simple choice is the positive real axis, $\operatorname{Re}(z) \geq 0, \operatorname{Im}(z)=0$.
(d) The branch points of this function are $z=0$ and $z=\infty$. Consider the curve $z=\sqrt{\epsilon} e^{i \theta}$ for fixed $\epsilon>0$ and $\theta \in[0,2 \pi]$. At $\theta=0$, the function has value $\epsilon^{\sqrt{2}}$. As θ increases from 0 to 2π, the function approaches takes the value,

$$
\left(\epsilon e^{i 2 \pi}\right)^{\sqrt{2}}=\epsilon^{\sqrt{2}} e^{i 2 \sqrt{2} \pi} \neq \epsilon^{\sqrt{2}}
$$

establishing that $z=0$ is a branch point. To establish that $z=\infty$ is a branch point, use the transformation $z=1 / w$, and consider the function $f(w)=w^{-\sqrt{2}}=z^{\sqrt{2}}$. We
can use the same argument as above to show that $f(w)$ has a branch point at $w=0$, corresponding to $z=\infty$.

Any simple curve connecting $z=0$ to $z=\infty$ can serve as a branch cut; a simple choice is the positive real axis defined by $\operatorname{Re}(z) \geq 0, \operatorname{Im}(z)=0$.
2.2.2. Determine all possible values and give the principal value of the following numbers (put in the form $x+i y)$:
(a) $i^{1 / 2}$
(b) $\frac{1}{(1+i)^{1 / 2}}$
(c) $\log (1+\sqrt{3} i)$
(d) $\log i^{3}$
(e) $i^{\sqrt{3}}$
(f) $\sin ^{-1} \frac{1}{\sqrt{2}}$

Solution:

(a) The function $z \mapsto \sqrt{z}$ has branch points at $0, \infty$ with two branches; we consider any branch cut not passing through i. The possible values, for any $k \in \mathbb{Z}$, are

$$
i^{1 / 2}=\left(e^{i \pi / 2+i 2 k \pi}\right)^{1 / 2}=e^{i \pi / 4} e^{i k \pi}= \pm e^{i \pi / 4}= \pm\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)
$$

The principal value is associated with $k=0$ above, i.e., the $(+)$ sign choice.
(b) The main branch complexity here stems from the $z \mapsto \sqrt{z}$ map in the denominator, so we compute this first. We again have for any $k \in Z$,

$$
(1+i)^{1 / 2}=\left(\sqrt{2} e^{i \pi / 4+i 2 \pi k}\right)^{1 / 2}=2^{1 / 4} e^{i \pi / 8+i \pi k}= \pm 2^{1 / 4} e^{i \pi / 8}
$$

Therefore,

$$
\frac{1}{(1+i)^{1 / 2}}= \pm \frac{e^{-i \pi / 8}}{2^{1 / 4}}= \pm \frac{1}{2^{1 / 4}}(\cos (\pi / 8)-i \sin (\pi / 8))
$$

(c) Since the log function has infinitely many branches, this quantity takes on infinitely many values. For any $k \in \mathbb{Z}$ we have,

$$
\log (1+\sqrt{3} i)=\log \left(2\left(\frac{1}{2} \frac{\sqrt{3}}{2} i\right)\right)=\log \left(2 e^{i \pi / 3+i 2 \pi k}\right)=\log 2+i\left(\frac{\pi}{3}+2 \pi k\right)
$$

The principal value occurs when $k=0$.
(d) Again for $k \in \mathbb{Z}$ we directly compute,

$$
\log i^{3}=\log \left(e^{i 3 \pi / 2+i 2 \pi k}\right)=i\left(\frac{3 \pi}{2}+2 \pi k\right)
$$

The principal value for the \log function takes imaginary values on the interval $[-\pi, \pi)$, so the principal value above occurs with $k=-1$, having value $-i \pi / 2$.
(e) For any $k \in \mathbb{Z}$ we have,

$$
i^{\sqrt{3}}=\left(e^{i \pi / 2+i 2 \pi k}\right)^{\sqrt{3}}=e^{i \sqrt{3}(\pi / 2+2 \pi k)}=\cos \left(\sqrt{3}\left(\frac{\pi}{2}+2 \pi k\right)\right)+i \sin \left(\sqrt{3}\left(\frac{\pi}{2}+2 \pi k\right)\right)
$$

The principal value occurs for $k=0$.
(f) We express the inverse sine function in terms of the logarithm, and so for any $k \in \mathbb{Z}$ we have,

$$
\sin ^{-1} \frac{1}{\sqrt{2}}=-i \log \left(\sqrt{1-\frac{1}{2}}+\frac{i}{\sqrt{2}}\right)=-i \log \left(\pm \frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)=\left\{\begin{array}{l}
-i \log e^{i \pi / 4+2 \pi k} \\
-i \log e^{i 3 \pi / 4+2 \pi k}
\end{array}\right.
$$

So that we have the following pair of infinite values:

$$
\sin ^{-1} \frac{1}{\sqrt{2}}=\left\{\begin{array}{l}
\frac{\pi}{4}+2 \pi k \\
\frac{3 \pi}{4}+2 \pi k .
\end{array}\right.
$$

There are two principal values we must determine: first the principal value of $z \mapsto \sqrt{z}$, and second the principal value of $z \mapsto \log z$. For the first choice, we make the identification $\pm \rightarrow+$ in the computations above. Thus, we have,

$$
\sin ^{-1} \frac{1}{\sqrt{2}}=-i \log e^{i \pi / 4+2 \pi k}
$$

The principal value of the \log function above occurs when $k=0$, so that the principal value is

$$
\sin ^{-1} \frac{1}{\sqrt{2}}=-i \log e^{i \pi / 4}=\frac{\pi}{4}
$$

2.2.3. Solve for z :
(a) $z^{5}=1$
(b) $3+2 e^{z-i}=1$
(c) $\tan z=1$

Solution:

(a) We expect 5 values for z since the function $w \mapsto w^{1 / 5}$ takes five values. We write $1=e^{i 2 \pi k}$ for $k \in \mathbb{Z}$ and then take fifth roots:

$$
z^{5}=e^{i 2 \pi k} \Longrightarrow z=e^{i 2 \pi k / 5}=1, e^{i 2 \pi / 5}, e^{i 4 \pi / 5}, e^{i 6 \pi / 5}, e^{i 8 \pi / 5}
$$

(b) We compute this solution via logarithms. We have for any $k \in Z$:

$$
e^{z-i}=-1 \Longrightarrow z=i+\log (-1)=i+\log e^{i \pi+i 2 \pi k}=i(1+\pi(2 k+1)) .
$$

(c) We use the logarithmic form for the inverse tangent function. As an intermediate step, we compute,

$$
\frac{i-1}{i+1}=\frac{\sqrt{2} e^{i 3 \pi / 4}}{\sqrt{2} e^{i \pi / 4}}=e^{i \pi / 2}=i
$$

Then for any $k \in \mathbb{Z}$ we have

$$
z=\tan ^{-1} 1 \Longrightarrow z=\frac{1}{2 i} \log \frac{i-1}{i+1}=\frac{1}{2 i} \log i=\frac{1}{2 i} \log e^{i \pi / 2+i 2 \pi k}=\pi(k+1 / 4)
$$

2.4.1. From the basic definition of complex integration, evaluate the integral $\oint_{C} f(z) \mathrm{d} z$, where C is the parameterized unit circle enclosing the origin, $C: x(t)=\cos t, y(t)=\sin t$ or $z=e^{i t}$, and where $f(z)$ is given by,
(a) z^{2}
(b) \bar{z}^{2}
(c) $\frac{z+1}{z^{2}}$

Solution:

(a) We parameterize the unit circle with $0 \leq t \leq 2 \pi$, and since $z=e^{i t}$ use,

$$
\mathrm{d} z=i e^{i t} \mathrm{~d} t,
$$

to write the integral:

$$
\int_{C} z^{2} \mathrm{~d} z=\int_{0}^{2 \pi}\left(e^{i t}\right)^{2} i e^{i t} \mathrm{~d} t=\int_{0}^{2 \pi} i e^{3 i t} \mathrm{~d} t=0
$$

(b) With the same parameterization as the previous part, we have,

$$
\int_{C} \bar{z}^{2} \mathrm{~d} z=\int_{0}^{2 \pi}\left(e^{-i t}\right)^{2} i e^{i t} \mathrm{~d} t=i \int_{0}^{2 \pi} e^{-i t} \mathrm{~d} t=0
$$

(c) With the same parameterization as the previous part, we have,

$$
\int_{C} \frac{z+1}{z^{2}} \mathrm{~d} z=\int_{0}^{2 \pi} \frac{e^{i t}+1}{e^{2 i t}} i e^{i t} \mathrm{~d} t=i \int_{0}^{2 \pi}\left(1+e^{-i t}\right) \mathrm{d} t=2 \pi i .
$$

2.4.4. Use the principal branch of $\log z$ and $z^{1 / 2}$ to evaluate,
(a) $\int_{-1}^{1} \log z \mathrm{~d} z$
(b) $\int_{-1}^{1} z^{1 / 2} \mathrm{~d} z$

Solution:

(a) These integrals can be recast as real-valued integrals. To begin, we recall that for a real variable x :

$$
\int_{0}^{1} \log x \mathrm{~d} x=\left.\lim _{\epsilon \downarrow 0} \int_{\epsilon}^{1} \log x \mathrm{~d} x \stackrel{\mathrm{IbP}}{=} \lim _{\epsilon \downarrow 0}(y \log y-y)\right|_{\epsilon} ^{1}=\lim _{\epsilon \downarrow 0}(-1-\epsilon \log \epsilon+\epsilon)=-1 .
$$

We now write,

$$
\int_{-1}^{1} \log z \mathrm{~d} z=\int_{-1}^{0} \log z \mathrm{~d} z+\int_{0}^{1} \log z \mathrm{~d} z
$$

The second integral, being an integral of a real-valued function over a real interval, takes value -1 as we have already established. Since we are on the principal branch of the $\operatorname{logarithm}$, then $\log z=\log |z|+i \arg z$, where $\arg z \in[-\pi, \pi)$. In our case, $z=|z| e^{-i \pi}$ for $|z| \in[0,1]$, so we have:

$$
\int_{-1}^{0} \log z \mathrm{~d} z=\int_{-1}^{0}(\log |z|-i \pi) \mathrm{d} z=\int_{0}^{1}(\log x-i \pi) \mathrm{d} x=-i \pi-1 .
$$

Putting everything together, we have:

$$
\int_{-1}^{1} \log z \mathrm{~d} z=\int_{-1}^{0} \log z \mathrm{~d} z+\int_{0}^{1} \log z \mathrm{~d} z=-i \pi-1-1=-2-i \pi
$$

(b) For the principal branch of the square root function, we treat $z=|z| e^{i \arg z}$, with $\arg z \in$ $[-\pi, \pi)$. I.e., the integral we wish to compute takes the form,

$$
\begin{aligned}
\int_{-1}^{1} z^{1 / 2} \mathrm{~d} z & =\int_{-1}^{0} z^{1 / 2} \mathrm{~d} z+\int_{0}^{1} z^{1 / 2} \mathrm{~d} z \\
& =e^{-i \pi / 2} \int_{-1}^{0}|z|^{1 / 2} \mathrm{~d} z+\int_{0}^{1} z^{1 / 2} \mathrm{~d} z=(1-i) \int_{0}^{1} z^{1 / 2} \mathrm{~d} z
\end{aligned}
$$

where the last equality uses the fact that the value of $|z|^{1 / 2}$ on $[-1,0]$ equals (a reflection of) that of $z^{1 / 2}$ on $[0,1]$. This last integral is directly computable via the parameterization:

$$
z(t)=t, \quad t \in[0,1],
$$

i.e.,

$$
\int_{0}^{1} z^{1 / 2} \mathrm{~d} z=\int_{0}^{1} \sqrt{t} \mathrm{~d} t=\frac{2}{3},
$$

and hence,

$$
\int_{-1}^{1} z^{1 / 2} \mathrm{~d} z=(1-i) \frac{2}{3} .
$$

