
Department of Mathematics, University of Utah
Applied Complex Variables and Asymptotic Methods

MATH 6720 – Section 001 – Spring 2024
Homework 2 Solutions

Analytic functions and integration, I

Due: Friday, Feb 2, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 2.1.1
2.1.5
2.2.1
2.2.2
2.2.3
2.4.1
2.4.4

Submit your homework assignment on Canvas via Gradescope.

2.1.1. Which of the following satisfy the Cauchy-Riemann (C-R) equations? If they satisfy
the C-R equations, give the analytic function of z.
(a) f(x, y) = x− iy + 1
(b) f(x, y) = y3 − 3x2y + i(x3 − 3xy2 + 2)
(c) f(x, y) = ey(cosx+ i sin y)

Solution:
(a) With u(x, y) = x+ 1 and v(x, y) = −y, the C-R equations read,

ux = 1 ̸= −1 = vy

uy = 0 = 0 = −vx.

Hence, the C-R equations are not satisfied.
(b) With u(x, y) = y3 − 3x2y and v(x, y) = x3 − 3xy2 + 2, the C-R equations read,

ux = −6xy = −6xy = vy

uy = 3y2 − 3x2 = −3x2 + 3y2 = −vx.

Since u and v satisfy the C-R equations (everywhere), then f is analytic as a function of
z. Since

iz3 = i(x+ iy)3 = ix3 + y3 − 3x2y − i3xy2 = f(x, y)− 2i,

then we conclude that f(x, y) = iz3 + 2i.
(c) With u(x, y) = ey cosx and v(x, y) = ey sin y, the C-R equations read,

ux = −ey sinx ey(sin y + cos y) = vy

uy = ey cosx 0 = −vx.
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It is unclear if the two expressions on each line are equal: to determine this, the second
set of equations requires

ey cosx = 0 =⇒ cosx = 0 =⇒ x =
(2k + 1)π

2
, k ∈ Z.

The first set of equations requires

sin y + cos y = (−1)k+1,

Therefore:

k odd =⇒ sin y = 1 or cos y = 1 =⇒ y =
(4n+ 1)π

2
, 2nπ, n ∈ Z.

k even =⇒ sin y = −1 or cos y = −1 =⇒ y =
(4n+ 3)π

2
, (2n+ 1)π, n ∈ Z.

In all of these cases, any (x, y) satisfying the C-R equations is an isolated point, but f is
not differentiable in any neighborhood around these points, so f is not analytic.

2.1.5. Let f(z) be analytic in some domain. Show that f(z) is necessarily a constant if either
the function f(z) is analytic or f(z) assumes only pure imaginary values in the domain.

Solution: Consider first the second case, where we assume both that f is analytic and assumes
only purely imaginary values, i.e., f(z) = iv(x, y). By the C-R equations,

ux = 0 = vy

uy = 0 = −vx,

so that vx = vy = 0, hence v(x, y) = C, and so f(x, y) = iC, where C must be real since f is
purely imaginary-valued.
In the second case, we assume that both f(z) and f(z) are analytic. Then with f(z) = u+ iv
and f(z) = u− iv, the C-R equations applied to both functions implies,

ux = vy, uy = −vx

ux = −vy, uy = vx,

where the first row contains the C-R conditions applied to f , and the second row contains the
C-R conditions applied to f . The first column of equalities implies,

vy = ux = 0,

and the second column implies,

vx = uy = 0.

I.e., ux = uy = 0 and vx = vy = 0, so that both u and v must be constant. Thus, f(z) = u+ iv
is also constant.

2.2.1. Find the location of the branch points and discuss possible branch cuts for the following
functions:
(a) 1

(z−1)1/2

Akil Narayan: akil (at) sci.utah.edu 2



Homework 2 Solutions
6720 Applied Complex Variables and Asymptotic Methods University of Utah

(b) (z + 1− 2i)1/4

(c) 2 log z2

(d) z
√
2

Solution:
(a) The branch points of this function are at z = 1,∞. To see why z = 1 is a branch point,

consider z = 1 + ϵeiθ for a fixed ϵ > 0 and for θ ∈ [0, 2π]. Then:

1

(z − 1)1/2
= (z − 1)−1/2 = (ϵeiθ)−1/2 =

1√
ϵ
e−iθ/2).

As θ sweeps from 0 → 2π, the function sweeps from 1√
ϵ
to 1√

ϵ
e−iπ = − 1√

ϵ
, which is a

different value. Hence, z = 1 is a branch point. To establish that z = ∞ is a branch
point, we use the transformation z − 1 = 1/t, so the function becomes

√
t, which we

already know has a branch point at t = 0, i.e., z = ∞.

Any simple curve connecting z = 1 to z = ∞ can serve as a branch cut. E.g., the positive
real axis to the right of 1, i.e., Re (z) ≥ 1, Im (z) = 0, is a particularly simple choice.

(b) The branch points of this function are z = −1+2i,∞. To establish this, we first consider
a mapped version of the function:

f(w) = w1/4, w = z + 1− 2i.

Note that f(w) has branch points at w = 0 and w = ∞ (as shown in the text), which
correspond to z = −1 + 2i and z = ∞, as desired.

Again, any simple curve connecting z = −1+ 2i to z = ∞ can seve as a branch cut, and
one simple choice can be the semi-infinite ray defined by Re (z) ≥ −1, Im (z) = 2.

(c) The branch points of this function are z = 0,∞. To establish this for z = 0, take z = ϵeiθ

for a small ϵ > 0 and θ ∈ [0, 2π]. At θ = 0 the function takes value 4 log ϵ. As θ sweeps
from 0 to 2π, the function takes the value

2 log
(
ϵei2π

)
= 4 log ϵ+ 4iπ ̸= 4 log ϵ,

showing a discontinuity. Thus, z = 0 is a branch point. To establish that z = ∞ is
a branch point, we make the transformation w = 1/z, so that the new function under
consideration is

f(w) = −2 log(w2) = 2 log(z2)

By the same arguments as above, f(w) has a branch point at w = 0, i.e., the original
function has a branch point at z = ∞.

Any simple curve connecting z = 0 to z = ∞ can serve as a branch cut. A simple choice
is the positive real axis, Re (z) ≥ 0, Im (z) = 0.

(d) The branch points of this function are z = 0 and z = ∞. Consider the curve z =
√
ϵeiθ

for fixed ϵ > 0 and θ ∈ [0, 2π]. At θ = 0, the function has value ϵ
√
2. As θ increases from

0 to 2π, the function approaches takes the value,(
ϵei2π

)√2
= ϵ

√
2ei2

√
2π ̸= ϵ

√
2,

establishing that z = 0 is a branch point. To establish that z = ∞ is a branch point,
use the transformation z = 1/w, and consider the function f(w) = w−

√
2 = z

√
2. We
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can use the same argument as above to show that f(w) has a branch point at w = 0,
corresponding to z = ∞.

Any simple curve connecting z = 0 to z = ∞ can serve as a branch cut; a simple choice
is the positive real axis defined by Re (z) ≥ 0, Im (z) = 0.

2.2.2. Determine all possible values and give the principal value of the following numbers (put
in the form x+ iy):
(a) i1/2

(b) 1
(1+i)1/2

(c) log(1 +
√
3i)

(d) log i3

(e) i
√
3

(f) sin−1 1√
2

Solution:
(a) The function z 7→

√
z has branch points at 0,∞ with two branches; we consider any

branch cut not passing through i. The possible values, for any k ∈ Z, are

i1/2 =
(
eiπ/2+i2kπ

)1/2
= eiπ/4eikπ = ±eiπ/4 = ±

(
1√
2
+

i√
2

)
.

The principal value is associated with k = 0 above, i.e., the (+) sign choice.
(b) The main branch complexity here stems from the z 7→

√
z map in the denominator, so

we compute this first. We again have for any k ∈ Z,

(1 + i)1/2 =
(√

2eiπ/4+i2πk
)1/2

= 21/4eiπ/8+iπk = ±21/4eiπ/8

Therefore,

1

(1 + i)1/2
= ±e−iπ/8

21/4
= ± 1

21/4
(cos(π/8)− i sin(π/8)) .

(c) Since the log function has infinitely many branches, this quantity takes on infinitely many
values. For any k ∈ Z we have,

log
(
1 +

√
3i
)
= log

(
2

(
1

2

√
3

2
i

))
= log

(
2eiπ/3+i2πk

)
= log 2 + i

(π
3
+ 2πk

)
.

The principal value occurs when k = 0.
(d) Again for k ∈ Z we directly compute,

log i3 = log
(
ei3π/2+i2πk

)
= i

(
3π

2
+ 2πk

)
.

The principal value for the log function takes imaginary values on the interval [−π, π),
so the principal value above occurs with k = −1, having value −iπ/2.

(e) For any k ∈ Z we have,

i
√
3 =

(
eiπ/2+i2πk

)√3
= ei

√
3(π/2+2πk) = cos

(√
3
(π
2
+ 2πk

))
+ i sin

(√
3
(π
2
+ 2πk

))
.

The principal value occurs for k = 0.
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(f) We express the inverse sine function in terms of the logarithm, and so for any k ∈ Z we
have,

sin−1 1√
2
= −i log

(√
1− 1

2
+

i√
2

)
= −i log

(
± 1√

2
+

i√
2

)
=

{
−i log eiπ/4+2πk,

−i log ei3π/4+2πk.

So that we have the following pair of infinite values:

sin−1 1√
2
=

{
π
4 + 2πk,
3π
4 + 2πk.

There are two principal values we must determine: first the principal value of z 7→
√
z,

and second the principal value of z 7→ log z. For the first choice, we make the identification
± → + in the computations above. Thus, we have,

sin−1 1√
2
= −i log eiπ/4+2πk.

The principal value of the log function above occurs when k = 0, so that the principal
value is

sin−1 1√
2
= −i log eiπ/4 =

π

4
.

2.2.3. Solve for z:
(a) z5 = 1
(b) 3 + 2ez−i = 1
(c) tan z = 1

Solution:
(a) We expect 5 values for z since the function w 7→ w1/5 takes five values. We write 1 = ei2πk

for k ∈ Z and then take fifth roots:

z5 = ei2πk =⇒ z = ei2πk/5 = 1, ei2π/5, ei4π/5, ei6π/5, ei8π/5.

(b) We compute this solution via logarithms. We have for any k ∈ Z:

ez−i = −1 =⇒ z = i+ log(−1) = i+ log eiπ+i2πk = i (1 + π(2k + 1)) .

(c) We use the logarithmic form for the inverse tangent function. As an intermediate step,
we compute,

i− 1

i+ 1
=

√
2ei3π/4√
2eiπ/4

= eiπ/2 = i.

Then for any k ∈ Z we have

z = tan−1 1 =⇒ z =
1

2i
log

i− 1

i+ 1
=

1

2i
log i =

1

2i
log eiπ/2+i2πk = π (k + 1/4) .

2.4.1. From the basic definition of complex integration, evaluate the integral
∮
C f(z) dz, where

C is the parameterized unit circle enclosing the origin, C : x(t) = cos t, y(t) = sin t or z = eit,
and where f(z) is given by,
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(a) z2

(b) z2

(c) z+1
z2

Solution:
(a) We parameterize the unit circle with 0 ≤ t ≤ 2π, and since z = eit use,

dz = ieit dt,

to write the integral:∫
C
z2 dz =

∫ 2π

0

(
eit
)2

ieit dt =

∫ 2π

0
ie3it dt = 0

(b) With the same parameterization as the previous part, we have,∫
C
z2 dz =

∫ 2π

0

(
e−it

)2
ieit dt = i

∫ 2π

0
e−it dt = 0

(c) With the same parameterization as the previous part, we have,∫
C

z + 1

z2
dz =

∫ 2π

0

eit + 1

e2it
ieit dt = i

∫ 2π

0
(1 + e−it) dt = 2πi.

2.4.4. Use the principal branch of log z and z1/2 to evaluate,
(a)

∫ 1
−1 log z dz

(b)
∫ 1
−1 z

1/2 dz

Solution:
(a) These integrals can be recast as real-valued integrals. To begin, we recall that for a real

variable x:∫ 1

0
log x dx = lim

ϵ↓0

∫ 1

ϵ
log x dx

IbP
= lim

ϵ↓0
(y log y − y)

∣∣1
ϵ
= lim

ϵ↓0
(−1− ϵ log ϵ+ ϵ) = −1.

We now write, ∫ 1

−1
log z dz =

∫ 0

−1
log z dz +

∫ 1

0
log z dz.

The second integral, being an integral of a real-valued function over a real interval, takes
value -1 as we have already established. Since we are on the principal branch of the
logarithm, then log z = log |z| + i arg z, where arg z ∈ [−π, π). In our case, z = |z|e−iπ

for |z| ∈ [0, 1], so we have:∫ 0

−1
log z dz =

∫ 0

−1
(log |z| − iπ) dz =

∫ 1

0
(log x− iπ) dx = −iπ − 1.

Putting everything together, we have:∫ 1

−1
log z dz =

∫ 0

−1
log z dz +

∫ 1

0
log z dz = −iπ − 1− 1 = −2− iπ.
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(b) For the principal branch of the square root function, we treat z = |z|ei arg z, with arg z ∈
[−π, π). I.e., the integral we wish to compute takes the form,∫ 1

−1
z1/2 dz =

∫ 0

−1
z1/2 dz +

∫ 1

0
z1/2 dz

= e−iπ/2

∫ 0

−1
|z|1/2 dz +

∫ 1

0
z1/2 dz = (1− i)

∫ 1

0
z1/2 dz,

where the last equality uses the fact that the value of |z|1/2 on [−1, 0] equals (a reflection
of) that of z1/2 on [0, 1]. This last integral is directly computable via the parameteriza-
tion:

z(t) = t, t ∈ [0, 1],

i.e., ∫ 1

0
z1/2 dz =

∫ 1

0

√
t dt =

2

3
,

and hence, ∫ 1

−1
z1/2 dz = (1− i)

2

3
.
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