DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Applied Complex Variables and Asymptotic Methods MATH 6720 – Section 001 – Spring 2024 Homework 1 Basics of complex numbers

Due Friday, Jan 19, 2024

Submit your solutions online through Gradescope. Below, problem C in section A.B is referred to as exercise A.B.C.

Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 1.1.2 (b,d) 1.1.3 1.2.1 1.2.5 Supplement 1.1 Supplement 1.2

1.1.2. Express each of the following in the form a + bi, where a and b are real: (b) $\frac{1}{1+i}$

(d) |3+4i|

1.1.3. Solve for the roots of the following equations:

(a) $z^3 = 4$ (b) $z^4 = -1$ (c) $(az+b)^3 = c$, where a, b, c > 0(d) $z^4 + 2z^2 + 2 = 0$

1.2.1. Sketch the regions associated with the following inequalities. Determine if the region is open, closed, bounded, or compact.

(a) $|z| \le 1$ (b) |2z + 1 + i| < 4(c) $\Re z \ge 4$ (d) $|z| \le |z + 1|$ (e) $0 < |2z - 1| \le 2$

1.2.5. Use any method to determine series expansions for the following functions:

(a) $\frac{\sin z}{z}$ (b) $\frac{\cosh z - 1}{z^2}$ (c) $\frac{e^z - 1 - z}{z}$

Supplement 1.1. Use de Moivre's Theorem to show that the two expressions,

 $\cos(n\theta),$ $\frac{\sin((n+1)\theta)}{\sin\theta},$

for arbitrary $n \in \mathbb{N}$, are both degree-*n* polynomials of $\cos \theta$.

Supplement 1.2. Prove the triangle inequality: Given $z_1, z_2 \in \mathbb{C}$, then

$$||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|.$$