Department of Mathematics, University of Utah Applied Complex Variables and Asymptotic Methods MTH6720 - Section 01 - Spring 2024

Final exam formula sheet

In what follows, C_{R} denotes a semicircular arc of radius R in the upper half-plane centered at the origin. The contour C_{ϵ} is a circular arc of radius ϵ centered around a point z_{0} that sweeps out an angle of ϕ.

1. Suppose f is analytic on an open domain containing a simple closed loop C. Then for all integers $n \geq 0$ and all z enclosed by C,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(w)}{(w-z)^{n+1}} \mathrm{~d} w
$$

2. The coefficients for a Laurent series of the function f are given by,

$$
c_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{(w-z)^{n+1}} \mathrm{~d} w
$$

3. If a continuous f is bounded over a contour C of finite length, i.e., $|f(z)| \leq M<\infty$ for all $z \in C$ and $\int_{C}|\mathrm{~d} z|=L<\infty$, then

$$
\left|\int_{C} f(z) \mathrm{d} z\right| \leq M L
$$

4. Suppose $f(z)=P(z) / Q(z)$ is a rational function with $\operatorname{deg} Q \geq \operatorname{deg} P+2$. Then,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{d} z=0
$$

5. (Jordan's Lemma) Suppose that $f(z) \rightarrow 0$ uniformly for $z \in C_{R}$ as $R \rightarrow \infty$. Then for any $k>0$,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} e^{i k z} f(z) \mathrm{d} z=0
$$

6. Suppose that $\left(z-z_{0}\right) f(z) \rightarrow 0$ uniformly for $z \in C_{\epsilon}$ as $\epsilon \rightarrow 0$. Then,

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) \mathrm{d} z=0
$$

7. Suppose that f has a simple pole at $z=z_{0}$. Then

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) \mathrm{d} z=i \phi \operatorname{Res}\left(f ; z_{0}\right)
$$

8. With C_{R} any origin-centered circular arc (not necessarily in the upper half-plane), if $z f(z) \rightarrow 0$ uniformly on C_{R} as $R \rightarrow 0$, then,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{d} z=0
$$

Laplace-type integrals These are formulas regarding asymptotic $(k \rightarrow \infty)$ behavior of $I(k):=\int_{a}^{b} f(t) e^{-k \phi(t)} \mathrm{d} t$ for $a<b$.
a. (Watson's Lemma) Set $a=0$ and $\phi(t)=t$. Assume f is integrable with the series expansion,

$$
f(t) \sim t^{\alpha} \sum_{n=0}^{\infty} a_{n} t^{\beta n} \quad t \rightarrow 0^{+}, \quad \alpha>-1, \quad \beta>0 .
$$

In addition, if $b<\infty$ then assume $|f(t)| \leq M<\infty$ for $t \in[a, b]$, and if $b=\infty$ then assume $f(t)=\mathcal{O}\left(e^{c t}\right)$ as $t \rightarrow \infty$ for some $c \in \mathbb{R}$. Then,

$$
I(k) \sim \sum_{n=0}^{\infty} a_{n} \frac{\Gamma(\alpha+\beta n+1)}{k^{\alpha+\beta n+1}} .
$$

b. (Laplace's Method) Assume $b<\infty$, and that $\phi \in C^{4}([a, b])$ and $f \in C^{2}([a, b])$. Suppose that for some $c \in[a, b]$, we have $\phi^{\prime}(c)=0$ and $\phi^{\prime \prime}(c)>0$. Also, assume that $\phi^{\prime}(t) \neq 0$ for all $t \in[a, b] \backslash\{c\}$. Then,

$$
I(k) \sim G(c) e^{-k \phi(c)} f(c) \sqrt{\frac{2 \pi}{k \phi^{\prime \prime}(c)}}+\mathcal{O}\left(\frac{e^{-k \phi(c)}}{k^{G(c)+1 / 2}}\right), \quad G(c):= \begin{cases}1, & c \in(a, b) \\ \frac{1}{2}, & \text { otherwise }\end{cases}
$$

Fourier-type integrals These are formulas regarding asymptotic $(k \rightarrow \infty)$ behavior of $I(k):=\int_{a}^{b} f(t) e^{i k \phi(t)} \mathrm{d} t$ for $a<b$.
a. Set $a=0$, and $\phi(t)=\mu t$, where $\mu= \pm 1$, and $k>0$. Suppose f vanishes infinitely smoothly at $t=b$, that $f \in C^{\infty}((0, b])$, and that for some $\gamma>-1, f(t) \sim t^{\gamma}+o\left(t^{\gamma}\right)$ as $t \rightarrow 0^{+}$. Then,

$$
I(k)=\left(\frac{1}{k}\right)^{\gamma+1} \Gamma(\gamma+1) e^{i \frac{\pi}{2} \mu(\gamma+1)}+o\left(k^{-(\gamma+1)}\right)
$$

b. (Stationary phase) Suppose $c \in[a, b]$ is the only value of t where $\phi^{\prime}(t)$ vanishes. Assume that f vanishes infinitely smoothly at both $t=a$ and $t=b$, and that both f and ϕ are C^{∞} on the intervals $[a, c)$ and $(c, b]$. Suppose that there is some $\gamma>-1$ such that as $t \rightarrow c$,

$$
\begin{aligned}
\phi(t)-\phi(c) & \sim \alpha(t-c)^{2}+o\left((t-c)^{2}\right), \\
f(t) & \sim \beta(t-c)^{\gamma}+o\left((t-c)^{\gamma}\right) .
\end{aligned}
$$

Then with $\mu=\operatorname{sgn} \alpha$,

$$
\int_{a}^{b} f(t) e^{i k \phi(t)} \mathrm{d} t \sim e^{i k \phi(c)} \beta \Gamma\left(\frac{\gamma+1}{2}\right) e^{i \pi \frac{\gamma+1}{4} \mu}\left(\frac{1}{k|\alpha|}\right)^{\frac{\gamma+1}{2}}+o\left(k^{-\frac{\gamma+1}{2}}\right) .
$$

