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Time-dependent problems D17-S02(a)

We will now (briefly) discuss time-dependent problems:

Bu
Bt “ Lpuq,

with periodic boundary conditions in the one-dimensional spatial variable x.

We will frequently take L as a linear operator (but this need not be the case).

In contrast to establishing rigorous convergence for such problems, we’ll focus on stability, and on practical
implementation considerations.

In particular we’ll consider “strong form” Galerkin and collocation methods.

As with other time-dependent problems, we’ll construct semi-discrete schemes, and not wade into the time-stepping
details.
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Time-dependent problems D17-S02(b)

We will now (briefly) discuss time-dependent problems:

Bu
Bt “ Lpuq,

with periodic boundary conditions in the one-dimensional spatial variable x.

We will frequently take L as a linear operator (but this need not be the case).

In contrast to establishing rigorous convergence for such problems, we’ll focus on stability, and on practical
implementation considerations.

In particular we’ll consider “strong form” Galerkin and collocation methods.

As with other time-dependent problems, we’ll construct semi-discrete schemes, and not wade into the time-stepping
details.
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A simple example D17-S03(a)
We seek to develop a Fourier-Galerkin scheme for the PDE,

Bu
Bt “ c

Bu
Bx ` ⌫

B2u

Bx2
,

with constants c P and ⌫ ° 0. We will assume the initial condition is smooth.

The exact solution satisfies an energy stability property:
ª 2⇡

0
u

Bu
Bt “ c

ª 2⇡

0
u

Bu
Bxdx ` ⌫

ª 2⇡

0
u

B2u

Bx2
dx

Using uut “ 1
2 pu2qt , uux “ 1

2 pu2qx and periodic boundary conditions:

d

dt
}u}2L2 “ 0 ´ ⌫}ux}2L2 § 0,

thus the energy of the solution is stable.

The Fourier-Galerkin method will seek a solution uN given by,

uN px, tq “
ÿ

|k|§N

pukptq�kpxq, �kpxq “ 1?
2⇡

eikx,

i.e., uN p¨, tq P VN “ span|k|§Neikx for every t.
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A simple example D17-S03(b)
We seek to develop a Fourier-Galerkin scheme for the PDE,

Bu
Bt “ c

Bu
Bx ` ⌫

B2u

Bx2
,

with constants c P and ⌫ ° 0. We will assume the initial condition is smooth.

The exact solution satisfies an energy stability property:
ª 2⇡

0
u

Bu
Bt “ c

ª 2⇡

0
u

Bu
Bxdx ` ⌫

ª 2⇡

0
u

B2u

Bx2
dx

Using uut “ 1
2 pu2qt , uux “ 1

2 pu2qx and periodic boundary conditions:

d

dt
}u}2L2 “ 0 ´ ⌫}ux}2L2 § 0,

thus the energy of the solution is stable.

The Fourier-Galerkin method will seek a solution uN given by,

uN px, tq “
ÿ

|k|§N

pukptq�kpxq, �kpxq “ 1?
2⇡

eikx,

i.e., uN p¨, tq P VN “ span|k|§Neikx for every t.
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A simple example D17-S03(c)
We seek to develop a Fourier-Galerkin scheme for the PDE,

Bu
Bt “ c

Bu
Bx ` ⌫

B2u

Bx2
,

with constants c P and ⌫ ° 0. We will assume the initial condition is smooth.

The exact solution satisfies an energy stability property:
ª 2⇡

0
u

Bu
Bt “ c

ª 2⇡

0
u

Bu
Bxdx ` ⌫

ª 2⇡

0
u

B2u

Bx2
dx

Using uut “ 1
2 pu2qt , uux “ 1

2 pu2qx and periodic boundary conditions:

d

dt
}u}2L2 “ 0 ´ ⌫}ux}2L2 § 0,

thus the energy of the solution is stable.

The Fourier-Galerkin method will seek a solution uN given by,

uN px, tq “
ÿ

|k|§N

pukptq�kpxq, �kpxq “ 1?
2⇡

eikx,

i.e., uN p¨, tq P VN “ span|k|§Neikx for every t.
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A simple Fourier Galerkin scheme D17-S04(a)
The Fourier-Galerkin scheme for this problem is given by:

B BuN

Bt , v

F
“ c

B BuN

Bx , v

F
` ⌫

B B2u

Bx2
, v

F
, @ v P VN

Choosing v “ �k for every |k| § N , this yields a size-p2N ` 1q ODE system given by

d

dt
pu “ cxD1pu ` ⌫xD2pu,

where pD1 and pD2 are spectral differentiation matrices, which are diagonal:

xD1 “ diag p´iN,´ipN ´ 1q, ¨ ¨ ¨ , iNq , xD2 “ diag
`´N2,´pN ´ 1q2, ¨ ¨ ¨ ,´N2

˘
.

Thus, these ODEs are actually uncoupled, and we can compute an exact solution:

pukptq “ pukp0qep´⌫k2`ickqt,

which has non-increasing magnitude in time, just as we expect from the (exact) stability condition.

In addition, these (uncoupled) ODE’s are actually the evolution of the exact projection coefficients, i.e., with pukptq
the exact solution to the ODE above, then

pukptq “ xu,�ky ,
where u is the exact solution.
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A simple Fourier Galerkin scheme D17-S04(b)
The Fourier-Galerkin scheme for this problem is given by:

B BuN

Bt , v

F
“ c

B BuN

Bx , v

F
` ⌫

B B2u

Bx2
, v

F
, @ v P VN

Choosing v “ �k for every |k| § N , this yields a size-p2N ` 1q ODE system given by

d

dt
pu “ cxD1pu ` ⌫xD2pu,

where pD1 and pD2 are spectral differentiation matrices, which are diagonal:

xD1 “ diag p´iN,´ipN ´ 1q, ¨ ¨ ¨ , iNq , xD2 “ diag
`´N2,´pN ´ 1q2, ¨ ¨ ¨ ,´N2

˘
.

Thus, these ODEs are actually uncoupled, and we can compute an exact solution:

pukptq “ pukp0qep´⌫k2`ickqt,

which has non-increasing magnitude in time, just as we expect from the (exact) stability condition.

In addition, these (uncoupled) ODE’s are actually the evolution of the exact projection coefficients, i.e., with pukptq
the exact solution to the ODE above, then

pukptq “ xu,�ky ,
where u is the exact solution.
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A second example, I D17-S05(a)

To understand why the Fourier-Galerkin method can be difficult to implement, consider

Bu
Bt “ sinx

Bu
Bx ,

again with periodic boundary conditions over x P r0, 2⇡s. Taking uN P VN as before, the scheme is given by,
B BuN

Bt , v

F
“

B
sinx

BuN

Bx , v

F
, @ v P VN

The inner product on the right-hand side is more complicated to compute this time.

We use the property,

�kpxq�`pxq “ 1?
2⇡

�k``pxq, k, ` P ,

which implies,

sinx �1
kpxq “ ´i

c
⇡

2
p�1pxq ´ �´1pxqq pikq�kpxq “ k

2
p�k`1pxq ´ �k´1pxqq .
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A second example, I D17-S05(b)

To understand why the Fourier-Galerkin method can be difficult to implement, consider

Bu
Bt “ sinx

Bu
Bx ,

again with periodic boundary conditions over x P r0, 2⇡s. Taking uN P VN as before, the scheme is given by,
B BuN

Bt , v

F
“

B
sinx

BuN

Bx , v

F
, @ v P VN

The inner product on the right-hand side is more complicated to compute this time.

We use the property,

�kpxq�`pxq “ 1?
2⇡

�k``pxq, k, ` P ,

which implies,

sinx �1
kpxq “ ´i

c
⇡

2
p�1pxq ´ �´1pxqq pikq�kpxq “ k

2
p�k`1pxq ´ �k´1pxqq .

A. Narayan (U. Utah – Math/SCI) Math 6620: Fourier spectral methods, II



A second example, II D17-S06(a)

Hence, the Fourier-Galerkin scheme can again be written as an ODE system:

d

dt
pu “ Apu,

where

A “

¨

˚̊
˚̊
˚̊
˝

0 ´N
2pN´1q

2 0 ´pN´1q
2

. . .
. . .

´N
2 0

˛

‹‹‹‹‹‹‚
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A third example, I D17-S07(a)
The previous example was not too bad, but things can get out of hand quickly. Consider,

Bu
Bt “ u

Bu
Bx ,

Then the Fourier-Galerkin scheme is,
B BuN

Bt , v

F
“

B
uN

BuN

Bx , v

F
, @ v P VN .

Setting v – �r for some |r| § N , we need to compute the inner product:
C

ÿ

|k|§N

pukptq�k

ÿ

|`|§N

i`pu`ptq�`,�r

G

We use the fact that
ÿ

|k|,|`|§N

i`pukptqpu`ptq�k�` “
ÿ

|k|,|`|§N

i`?
2⇡

pukptqpu`ptq�k`` “
ÿ

|s|§2N

as�s,

where

as “
N^ps`Nqÿ

`“p´Nq_ps´Nq

i`?
2⇡

pus´`ptqpu`ptq
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A third example, I D17-S07(b)
The previous example was not too bad, but things can get out of hand quickly. Consider,

Bu
Bt “ u

Bu
Bx ,

Then the Fourier-Galerkin scheme is,
B BuN

Bt , v

F
“

B
uN

BuN

Bx , v

F
, @ v P VN .

Setting v – �r for some |r| § N , we need to compute the inner product:
C

ÿ

|k|§N

pukptq�k

ÿ

|`|§N

i`pu`ptq�`,�r

G

We use the fact that
ÿ

|k|,|`|§N

i`pukptqpu`ptq�k�` “
ÿ

|k|,|`|§N

i`?
2⇡

pukptqpu`ptq�k`` “
ÿ

|s|§2N

as�s,

where

as “
N^ps`Nqÿ

`“p´Nq_ps´Nq

i`?
2⇡

pus´`ptqpu`ptq
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A third example, II D17-S08(a)

So the scheme is,

d

dt
pu “ appuq,

where

ak “
N^pk`Nqÿ

`“p´Nq_pk´Nq

i`?
2⇡

puk´`ptqpu`ptq.

Our PDE was nonlinear, so it’s no surprise that our semi-discrete form is nonlinear.

In particular, it involves a (discrete) convolution.

From an implementation standpoint, this is pretty expensive: The operation

pu fiÑ a ppuq ,

is an OpN2q operation.
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A third example, II D17-S08(b)

So the scheme is,

d

dt
pu “ appuq,

where

ak “
N^pk`Nqÿ

`“p´Nq_pk´Nq

i`?
2⇡

puk´`ptqpu`ptq.

Our PDE was nonlinear, so it’s no surprise that our semi-discrete form is nonlinear.

In particular, it involves a (discrete) convolution.

From an implementation standpoint, this is pretty expensive: The operation

pu fiÑ a ppuq ,

is an OpN2q operation.
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A fourth example D17-S09(a)
Things can get even worse:

Bu
Bt “ sinu

Bu
Bx ,

In this case, it is entirely unclear how to compute,
B
sinuN px, tq B

BuN
,�k

F
,

since the sinuN term cannot be easily expanded in terms of the basis �`.

Thus, in some cases one cannot even form the true Galerkin system.

As we briefly discussed before, one can employ a pseudospectral approach, which would use collocation values u in
intermediate computations:

pu DFT››››Ñ u Ñ sinu
DFT››››Ñ zsinu,

which corresponds to the approximation:

sinuN « IN sinuN .

(Or one could interpolate the entire sinuN
B

BxuN term).
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A fourth example D17-S09(b)
Things can get even worse:

Bu
Bt “ sinu

Bu
Bx ,

In this case, it is entirely unclear how to compute,
B
sinuN px, tq B

BuN
,�k

F
,

since the sinuN term cannot be easily expanded in terms of the basis �`.

Thus, in some cases one cannot even form the true Galerkin system.

As we briefly discussed before, one can employ a pseudospectral approach, which would use collocation values u in
intermediate computations:

pu DFT››››Ñ u Ñ sinu
DFT››››Ñ zsinu,

which corresponds to the approximation:

sinuN « IN sinuN .

(Or one could interpolate the entire sinuN
B

BxuN term).
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Collocation D17-S10(a)
Collocation methods are, of course, much easier, but they come with a price.

Consider our first example,

Bu
Bt “ c

Bu
Bx ` ⌫

B2u

Bx2
.

The collocation (Petrov-Galerkin) formulation of this problem corresponds to the trial function,

uN px, tq “
Mÿ

k“1

ukptq`kpxq, M “ 2N ` 1,

where `k is the cardinal Lagrange function at xk for the space VN .

With collocation values uptq “ pukptqqkPrMs, as our degrees of freedom, and �xk for k P rMs our test functions,
then our scheme reads,

B BuN

Bt , v

F
“

B
c

BuN

Bx ` ⌫
B2uN

Bx2
, v

F
, v P spankPrMs�xk

which just means we enforce zero residual at the points xk:
d

dt
u “ cÄD1u ` ⌫ÄD2u,

where ÄD1 and ÄD2 are the collocation differentiation matrices (dense) for the first and second derivatives,
respectively.
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Collocation D17-S10(b)
Collocation methods are, of course, much easier, but they come with a price.

Consider our first example,

Bu
Bt “ c

Bu
Bx ` ⌫

B2u

Bx2
.

The collocation (Petrov-Galerkin) formulation of this problem corresponds to the trial function,

uN px, tq “
Mÿ

k“1

ukptq`kpxq, M “ 2N ` 1,

where `k is the cardinal Lagrange function at xk for the space VN .

With collocation values uptq “ pukptqqkPrMs, as our degrees of freedom, and �xk for k P rMs our test functions,
then our scheme reads,

B BuN

Bt , v

F
“

B
c

BuN

Bx ` ⌫
B2uN

Bx2
, v

F
, v P spankPrMs�xk

which just means we enforce zero residual at the points xk:
d

dt
u “ cÄD1u ` ⌫ÄD2u,

where ÄD1 and ÄD2 are the collocation differentiation matrices (dense) for the first and second derivatives,
respectively.
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A second collocation example D17-S11(a)

Collocation makes a lot of things much easier. E.g., for

Bu
Bt “ sinu

Bu
Bx ,

the collocation scheme is just,

d

dt
u “ psinuq d

´
ÄD1u

¯
,

where d is the elementwise product between vectors and sinu is interpreted elementwise.

Therefore, many of the analytical challenges with Galerkin methods (even if using pseudospectral approaches) are
mitigated by using collocation schemes.

The main difference between Galerkin and collocation methods in this context is

d

dt
uN “ PNLpuN q vs.

d

dt
uN “ INLpuN q,

and hence the aliasing error for LpuN q is what sets these two methods apart.

Naturally, there is no free lunch: although collocation is easier to formulate/implement, it’s generally easier to prove
things (e.g., stability) for Galerkin approaches.
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A second collocation example D17-S11(b)

Collocation makes a lot of things much easier. E.g., for

Bu
Bt “ sinu

Bu
Bx ,

the collocation scheme is just,

d

dt
u “ psinuq d

´
ÄD1u

¯
,

where d is the elementwise product between vectors and sinu is interpreted elementwise.

Therefore, many of the analytical challenges with Galerkin methods (even if using pseudospectral approaches) are
mitigated by using collocation schemes.

The main difference between Galerkin and collocation methods in this context is

d

dt
uN “ PNLpuN q vs.

d

dt
uN “ INLpuN q,

and hence the aliasing error for LpuN q is what sets these two methods apart.

Naturally, there is no free lunch: although collocation is easier to formulate/implement, it’s generally easier to prove
things (e.g., stability) for Galerkin approaches.
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Recall: semi-bounded operators D17-S12(a)
Stability for time-dependent Fourier spectral methods begins with similar considerations at the continuous level.

Consider again our prototypical example,

ut “ Lpuq,
with periodic boundary conditions on r0, 2⇡s with L a linear operator.

The adjoint L
˚ of the operator L is defined by the condition,

xLu, vy “ xu,Lvy ,
for every periodic u, v P L2.

We call L semi-bounded if,

L ` L
˚ § CI,

for some C P . This means that,
@`
L ` L

˚˘
u, u

D § xCu, uy “ C}u}2L2

Note the following result: If L is semi-bounded, then ut “ Lu is a well-posed PDE, and the solution satisfies the
stability condition,

}uptq}L2 § epC{2qt}up0q}L2 .
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Recall: semi-bounded operators D17-S12(b)
Stability for time-dependent Fourier spectral methods begins with similar considerations at the continuous level.

Consider again our prototypical example,

ut “ Lpuq,
with periodic boundary conditions on r0, 2⇡s with L a linear operator.

The adjoint L
˚ of the operator L is defined by the condition,

xLu, vy “ xu,Lvy ,
for every periodic u, v P L2.

We call L semi-bounded if,

L ` L
˚ § CI,

for some C P . This means that,
@`
L ` L

˚˘
u, u

D § xCu, uy “ C}u}2L2

Note the following result: If L is semi-bounded, then ut “ Lu is a well-posed PDE, and the solution satisfies the
stability condition,

}uptq}L2 § epC{2qt}up0q}L2 .
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Recall: semi-bounded operators D17-S12(c)
Stability for time-dependent Fourier spectral methods begins with similar considerations at the continuous level.

Consider again our prototypical example,

ut “ Lpuq,
with periodic boundary conditions on r0, 2⇡s with L a linear operator.

The adjoint L
˚ of the operator L is defined by the condition,

xLu, vy “ xu,Lvy ,
for every periodic u, v P L2.

We call L semi-bounded if,

L ` L
˚ § CI,

for some C P . This means that,
@`
L ` L

˚˘
u, u

D § xCu, uy “ C}u}2L2

Note the following result: If L is semi-bounded, then ut “ Lu is a well-posed PDE, and the solution satisfies the
stability condition,

}uptq}L2 § epC{2qt}up0q}L2 .

A. Narayan (U. Utah – Math/SCI) Math 6620: Fourier spectral methods, II



Recall: semi-bounded operators D17-S12(d)
Stability for time-dependent Fourier spectral methods begins with similar considerations at the continuous level.

Consider again our prototypical example,

ut “ Lpuq,
with periodic boundary conditions on r0, 2⇡s with L a linear operator.

The adjoint L
˚ of the operator L is defined by the condition,

xLu, vy “ xu,Lvy ,
for every periodic u, v P L2.

We call L semi-bounded if,

L ` L
˚ § CI,

for some C P . This means that,
@`
L ` L

˚˘
u, u

D § xCu, uy “ C}u}2L2

Note the following result: If L is semi-bounded, then ut “ Lu is a well-posed PDE, and the solution satisfies the
stability condition,

}uptq}L2 § epC{2qt}up0q}L2 .

A. Narayan (U. Utah – Math/SCI) Math 6620: Fourier spectral methods, II





Some examples, I D17-S13(a)

We will use the notion of semi-bounded operators, so it is useful to consider some examples.

Example
Consider

ut “ Lpuq :“ cpxqux.

This is a variable wavespeed advection equation. We assume c is real-valued and periodic.
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Some examples, I D17-S13(b)

We will use the notion of semi-bounded operators, so it is useful to consider some examples.

Example
Consider

ut “ Lpuq :“ cpxqux.

This is a variable wavespeed advection equation. We assume c is real-valued and periodic. We compute L
˚ through

integration by parts:

xLu, vy “ xcpxqux, vy “
ª 2⇡

0
cpxquxvdx

IbP“ uvcpxq
ˇ̌2⇡
0

´
ª 2⇡

0
u pcpxqvqx dx.

If we also assume that c is differentiable:

xLu, vy “ ´
ª 2⇡

0
u

`
c1pxqv ` cpxqvx

˘
dx

“ @
u,´c1pxqv ´ cpxqvx

D “ @
u,L˚v

D
.
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Some examples, I D17-S13(c)

We will use the notion of semi-bounded operators, so it is useful to consider some examples.

Example
Consider

ut “ Lpuq :“ cpxqux.

This is a variable wavespeed advection equation. We assume c is real-valued and periodic.

L
˚ “ ´cpxq B

Bx ´ c1pxqI

Therefore,

L ` L
˚ “ cpxq B

Bx ´ cpxq B
Bx ´ c1pxqI “ ´c1pxqI.

Finally: if cpxq is periodic, differentiable, and has bounded derivative, then L is semi-bounded with L ` L
˚ § CI,

with C “ max |c1pxq|.
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Some examples, II D17-S14(a)

Example
Consider

ut “ Lpuq :“ B
Bxpxq B

Bxu,

where  is a real, non-negative, periodic and differentiable function.

Again with integration by parts:

xLu, vy “
ª 2⇡

0

B
Bxpxq B

Bxu, vdx

“ ´
ª 2⇡

0
pxquxvxdx

“
ª 2⇡

0
u

B
Bxpxq B

Bxvdx “
B
u,

ˆ B
Bxpxq B

Bx

˙
v

F
.

Therefore,

L ` L
˚ “ 2

B
Bxpxq B

Bx .
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Some examples, II D17-S14(b)

Example
Consider

ut “ Lpuq :“ B
Bxpxq B

Bxu,

where  is a real, non-negative, periodic and differentiable function.

To show that this is semi-bounded, note that,

@pL ` L
˚qu, uD “ 2

B B
Bxpxqux, u

F
“ ´2 xpxqux, uxy § 0}u}2L2 .
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Fourier-Galerkin stability D17-S15(a)

A particularly attractive property of the Fourier-Galerkin method: if L is semi-bounded, not only is the original PDE
well-posed with a stability condition, but the Fourier-Galerkin solution obeys the same stability condition.

Theorem
Assume L is semi-bounded with L ` L

˚ § CI, and consider the PDE ut “ Lpuq. Then the Fourier-Galerkin solution
is stable and obeys the bound,

}uN ptq}L2 § epC{2qt}uN p0q}L2
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Fourier-Galerkin stability D17-S15(b)

A particularly attractive property of the Fourier-Galerkin method: if L is semi-bounded, not only is the original PDE
well-posed with a stability condition, but the Fourier-Galerkin solution obeys the same stability condition.

Theorem
Assume L is semi-bounded with L ` L

˚ § CI, and consider the PDE ut “ Lpuq. Then the Fourier-Galerkin solution
is stable and obeys the bound,

}uN ptq}L2 § epC{2qt}uN p0q}L2

The first step is to show that PN “ P˚
N :

xPNu, vy “ xPNu, PNvy ` xPNu, pI ´ PN qvy
“ xPNu, PNvy
“ xPNu, PNvy ` xpI ´ PN qu, PNvy
“ xu, PNvy .
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Fourier-Galerkin stability D17-S15(c)

A particularly attractive property of the Fourier-Galerkin method: if L is semi-bounded, not only is the original PDE
well-posed with a stability condition, but the Fourier-Galerkin solution obeys the same stability condition.

Theorem
Assume L is semi-bounded with L ` L

˚ § CI, and consider the PDE ut “ Lpuq. Then the Fourier-Galerkin solution
is stable and obeys the bound,

}uN ptq}L2 § epC{2qt}uN p0q}L2

The second step uses uN “ PNuN to formulate a PDE that uN satisfies:
B
Bt uN “ PNLu ùñ B

Bt uN “ PNLPNu “: LNu.

Then,

LN ` L
˚
N “ PNLPN ` pPNLPN q˚

“ PNLPN ` PNL
˚PN

“ PN
`
L ` L

˚˘
PN § CPN .

Therefore,
@pLN ` L

˚
N quN , uN

D § C xPNuN , uN y “ C}uN }2L2 ,

which implies the result.
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Collocation stability D17-S16(a)

Collocation stability is more delicate and technical.

For example, for the rather simple problem

ut “ cpxqux,

then the Fourier collocation method is stable only if c is bounded away from 0.
(Recall for Fourier Galerkin, and in the general continuous problem, cpxq changing sign is no problem.)

The instability is “weak” and often does not surface in practice; nevertheless it is there.

One must resort to some somewhat clever alternatives to fix the problem. In particular, consider the rewritten
problem,

ut “ 1

2
cpxqux ` 1

2

B
Bx pcpxquq ´ 1

2
c1pxqu,

which is called the skew-symmetric form. Note that if a is differentiable, this is equivalent to the original PDE.

The Fourier collocation method applied to the skew-symmetric form is stable.

The difference between the two schemes is that the scheme for the skew-symmetric form effectively adds a term that
compensates for aliasing error.
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Collocation stability D17-S16(b)

Collocation stability is more delicate and technical.

For example, for the rather simple problem

ut “ cpxqux,

then the Fourier collocation method is stable only if c is bounded away from 0.
(Recall for Fourier Galerkin, and in the general continuous problem, cpxq changing sign is no problem.)

The instability is “weak” and often does not surface in practice; nevertheless it is there.

One must resort to some somewhat clever alternatives to fix the problem. In particular, consider the rewritten
problem,

ut “ 1

2
cpxqux ` 1

2

B
Bx pcpxquq ´ 1

2
c1pxqu,

which is called the skew-symmetric form. Note that if a is differentiable, this is equivalent to the original PDE.

The Fourier collocation method applied to the skew-symmetric form is stable.

The difference between the two schemes is that the scheme for the skew-symmetric form effectively adds a term that
compensates for aliasing error.
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