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Weighted residual methods

D16-S02(a)

We can now discuss some basic approaches for constructing a particular class of weighted residual methods: spectral
methods.

Recall: with L a (time-independent, stationary) linear operator and f a given function, we seek to compute the
solution u to

Lpuq “ f, Rpuq :“ Lpuq ´ f. ` BC’s

Strong notions of convergence are too restrictive, so we employ weak notions:

xRpuq, vy “ 0, @ v P V,

where U Q u is a chosen trial space, and V Q v is a chosen test space.

These are generic weighted residual methods.

The inner product x¨, ¨y corresponds to a particular Hilbert space (for us, almost always L
2).

We’ll discuss methods where we choose U and/or V as a space of Fourier functions.

This will be a particular instance of a spectral method.
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Weighted residual methods

D16-S02(b)

We can now discuss some basic approaches for constructing a particular class of weighted residual methods: spectral
methods.

Recall: with L a (time-independent, stationary) linear operator and f a given function, we seek to compute the
solution u to

Lpuq “ f, Rpuq :“ Lpuq ´ f. ` BC’s

Strong notions of convergence are too restrictive, so we employ weak notions:

xRpuq, vy “ 0, @ v P V,

where U Q u is a chosen trial space, and V Q v is a chosen test space.

These are generic weighted residual methods.

The inner product x¨, ¨y corresponds to a particular Hilbert space (for us, almost always L
2).

We’ll discuss methods where we choose U and/or V as a space of Fourier functions.

This will be a particular instance of a spectral method.
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The Fourier-Galerkin method

D16-S03(a)

The Fourier-Galerkin method:
– Is a Galerkin procedure: U “ V

– Uses (global) Fourier functions: V “ spanteikx | k P u (assuming one spatial dimension on r0, 2⇡s)
Of course, we expect this choice is effective only if the boundary conditions are periodic.

Recall that a proper strategy to address this problem is to identify the appropriate bilinear form a:

Lpuq “ f
IbP››Ñ apu, vq “ xf, vy .

One can then choose finite-dimensional spaces UN and VN for discretization. I.e.,:

Find uN P UN satisfying apuN , vq “ xf, vy , for all v P V.
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The Fourier-Galerkin method

D16-S03(b)

The Fourier-Galerkin method:
– Is a Galerkin procedure: U “ V

– Uses (global) Fourier functions: V “ spanteikx | k P u (assuming one spatial dimension on r0, 2⇡s)
Of course, we expect this choice is effective only if the boundary conditions are periodic.

Recall that a proper strategy to address this problem is to identify the appropriate bilinear form a:

Lpuq “ f
IbP››Ñ apu, vq “ xf, vy .

One can then choose finite-dimensional spaces UN and VN for discretization. I.e.,:

Find uN P UN satisfying apuN , vq “ xf, vy , for all v P V.

A. Narayan (U. Utah – Math/SCI) Math 6630: Fourier spectral methods, I



The Fourier-Galerkin method

D16-S03(c)

The Fourier-Galerkin method:
– Is a Galerkin procedure: U “ V

– Uses (global) Fourier functions: V “ spanteikx | k P u (assuming one spatial dimension on r0, 2⇡s)
Of course, we expect this choice is effective only if the boundary conditions are periodic.

Recall that a proper strategy to address this problem is to identify the appropriate bilinear form a:

Lpuq “ f
IbP››Ñ apu, vq “ xf, vy .

One can then choose finite-dimensional spaces UN and VN for discretization. I.e.,:

Find uN P UN satisfying apuN , vq “ xf, vy , for all v P V.
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An elliptic equation

D16-S04(a)

Let’s construct a Fourier-Galerkin scheme for the following problem:

´u
2pxq ` upxq “ fpxq, periodic BC’s

Since this is a Galerkin scheme, U “ V , and so we need only identify V . With periodic boundary conditions, it’s
sensible to choose:

u, v P spant�kpxqukP , �kpxq “ 1?
2⇡

e
ikx

.

Using an L
2 inner product on r0, 2⇡s, then

@´u
2 ` u, v

D IbP››Ñ @
u

1
, v

1D ` xu, vy .
This immediately suggests an appropriate sesquilinear form:

apu, vq :“ @
u

1
, v

1D ` xu, vy ,
which we know is continuous and coercive with respect to H

1
p .

Thus, we choose V “ H
1
p , and the dual of V with respect to L

2 is V
˚ “ H

´1
p .

Thus pV, L2
, V

˚q is our Gelfand triple, and for any f P V
˚,

Find u P V satisfying apu, vq “ xf, vy for all v P V

is well-posed by Lax-Milgram.
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An elliptic equation

D16-S04(b)

Let’s construct a Fourier-Galerkin scheme for the following problem:

´u
2pxq ` upxq “ fpxq, periodic BC’s

Since this is a Galerkin scheme, U “ V , and so we need only identify V . With periodic boundary conditions, it’s
sensible to choose:

u, v P spant�kpxqukP , �kpxq “ 1?
2⇡

e
ikx

.

Using an L
2 inner product on r0, 2⇡s, then

@´u
2 ` u, v

D IbP››Ñ @
u

1
, v

1D ` xu, vy .
This immediately suggests an appropriate sesquilinear form:

apu, vq :“ @
u

1
, v

1D ` xu, vy ,
which we know is continuous and coercive with respect to H

1
p .

Thus, we choose V “ H
1
p , and the dual of V with respect to L

2 is V
˚ “ H

´1
p .

Thus pV, L2
, V

˚q is our Gelfand triple, and for any f P V
˚,

Find u P V satisfying apu, vq “ xf, vy for all v P V

is well-posed by Lax-Milgram.
A. Narayan (U. Utah – Math/SCI) Math 6630: Fourier spectral methods, I



A Fourier-Galerkin scheme

D16-S05(a)

Find u P V satisfying apu, vq “ xf, vy for all v P V

We computed last time:

sup
u,vPV

|apu, vq|
}u}V }v}V

§
?
2 “: C, inf

vPV
|apv, vq|

}v}2
V

“ 1 “: c.

which will be useful when computing the error in our scheme.

To turn all this into a scheme, we need to discretize. Let’s choose,

VN “ span
 
�k,

ˇ̌
|k| § N

( Ä V.

Then our discrete scheme is

Find uN P VN satisfying apuN , vq “ xf, vy for all v P VN

The above problem is equivalent to making the ansatz,

uN pxq “
ÿ

|k|§N

puk�kpxq,

and using v – �k for every k satisfying |k| § N .
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A Fourier-Galerkin scheme

D16-S05(b)

Find u P V satisfying apu, vq “ xf, vy for all v P V

We computed last time:

sup
u,vPV

|apu, vq|
}u}V }v}V

§
?
2 “: C, inf

vPV
|apv, vq|

}v}2
V

“ 1 “: c.

which will be useful when computing the error in our scheme.

To turn all this into a scheme, we need to discretize. Let’s choose,

VN “ span
 
�k,

ˇ̌
|k| § N

( Ä V.

Then our discrete scheme is

Find uN P VN satisfying apuN , vq “ xf, vy for all v P VN

The above problem is equivalent to making the ansatz,

uN pxq “
ÿ

|k|§N

puk�kpxq,

and using v – �k for every k satisfying |k| § N .
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A Fourier-Galerkin scheme

D16-S05(c)

Find u P V satisfying apu, vq “ xf, vy for all v P V

We computed last time:

sup
u,vPV

|apu, vq|
}u}V }v}V

§
?
2 “: C, inf

vPV
|apv, vq|

}v}2
V

“ 1 “: c.

which will be useful when computing the error in our scheme.

To turn all this into a scheme, we need to discretize. Let’s choose,

VN “ span
 
�k,

ˇ̌
|k| § N

( Ä V.

Then our discrete scheme is

Find uN P VN satisfying apuN , vq “ xf, vy for all v P VN

The above problem is equivalent to making the ansatz,

uN pxq “
ÿ

|k|§N

puk�kpxq,

and using v – �k for every k satisfying |k| § N .
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Scheme details

D16-S06(a)

Find uN P VN satisfying apuN , vq “ xf, vy for all v P VN

uN pxq “
ÿ

|k|§N

puk�kpxq,

With v “ �k for a fixed k, the weak form reads,
C

ÿ

|`|§N

pi`qpu`�`, pikq�k

G
` xuN ,�ky “ xf,�ky .

Then defining,
pfk “ xf,�ky , dk “ k

2 ` 1,

our scheme is,
xD2pu “ pf , xD2 “ diag

`p´Nq2 ` 1, p´N ` 1q2 ` 1, ¨ ¨ ¨ pN ´ 1q2 ` 1, pN2q ` 1
˘
,

and so pu “ xD
´1pf is the solution, prescribing uN .

pD2 is sometimes called a “modal” differentiation matrix.

In practice, we cannot compute pfk exactly, so these coefficients are approximated with quadrature/interpolation
(injecting aliasing error into the right-hand side).
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Scheme details

D16-S06(b)

Find uN P VN satisfying apuN , vq “ xf, vy for all v P VN

uN pxq “
ÿ

|k|§N

puk�kpxq,

With v “ �k for a fixed k, the weak form reads,
C

ÿ

|`|§N

pi`qpu`�`, pikq�k

G
` xuN ,�ky “ xf,�ky .

Then defining,
pfk “ xf,�ky , dk “ k

2 ` 1,

our scheme is,
xD2pu “ pf , xD2 “ diag

`p´Nq2 ` 1, p´N ` 1q2 ` 1, ¨ ¨ ¨ pN ´ 1q2 ` 1, pN2q ` 1
˘
,

and so pu “ xD
´1pf is the solution, prescribing uN .

pD2 is sometimes called a “modal” differentiation matrix.

In practice, we cannot compute pfk exactly, so these coefficients are approximated with quadrature/interpolation
(injecting aliasing error into the right-hand side).
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Error estimates

D16-S07(a)

One of the significant advantages of all this is that we have already laid all the groundwork we need to compute a
direct error estimate.
First, we have that,

}u ´ uN }V § C

c
inf

vPVN

}u ´ v}V ,
C

c
“

?
2,

due to Céa’s Lemma, which in turn relies on Lax-Milgram.

We also have,

inf
vPvN

}u ´ v}V § }u ´ PNu}V ,

where PN is the L
2-orthogonal projection onto V “ H

1
p .

Finally, we have our basic approximation estimate for Fourier series:

u P H
s

p ùñ }u ´ PNu}
H1 § N

1´s
.

One final piece of information: while Lax-Milgram establishes f P H
´1
p ñ u P H

1
p , one can also show that

f P H
r
p ñ u P H

r`2
p .

Thus, overall, we have that for any r ° ´1,

f P H
r

p ùñ u P H
r`2
p ùñ }u ´ uN }

H1 §
?
2N1´pr`2q À N

´pr`1q
.

This convergence rate is optimal (since it is the optimal rate of approximation).
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Error estimates

D16-S07(b)

One of the significant advantages of all this is that we have already laid all the groundwork we need to compute a
direct error estimate.
First, we have that,

}u ´ uN }V § C

c
inf

vPVN

}u ´ v}V ,
C

c
“

?
2,

due to Céa’s Lemma, which in turn relies on Lax-Milgram.

We also have,

inf
vPvN

}u ´ v}V § }u ´ PNu}V ,

where PN is the L
2-orthogonal projection onto V “ H

1
p .

Finally, we have our basic approximation estimate for Fourier series:

u P H
s

p ùñ }u ´ PNu}
H1 § N

1´s
.

One final piece of information: while Lax-Milgram establishes f P H
´1
p ñ u P H

1
p , one can also show that

f P H
r
p ñ u P H

r`2
p .

Thus, overall, we have that for any r ° ´1,

f P H
r

p ùñ u P H
r`2
p ùñ }u ´ uN }

H1 §
?
2N1´pr`2q À N

´pr`1q
.

This convergence rate is optimal (since it is the optimal rate of approximation).
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Error estimates

D16-S07(c)

One of the significant advantages of all this is that we have already laid all the groundwork we need to compute a
direct error estimate.
First, we have that,

}u ´ uN }V § C

c
inf

vPVN

}u ´ v}V ,
C

c
“

?
2,

due to Céa’s Lemma, which in turn relies on Lax-Milgram.

We also have,

inf
vPvN

}u ´ v}V § }u ´ PNu}V ,

where PN is the L
2-orthogonal projection onto V “ H

1
p .

Finally, we have our basic approximation estimate for Fourier series:

u P H
s

p ùñ }u ´ PNu}
H1 § N

1´s
.

One final piece of information: while Lax-Milgram establishes f P H
´1
p ñ u P H

1
p , one can also show that

f P H
r
p ñ u P H

r`2
p .

Thus, overall, we have that for any r ° ´1,

f P H
r

p ùñ u P H
r`2
p ùñ }u ´ uN }

H1 §
?
2N1´pr`2q À N

´pr`1q
.

This convergence rate is optimal (since it is the optimal rate of approximation).
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Error estimates

D16-S07(d)

One of the significant advantages of all this is that we have already laid all the groundwork we need to compute a
direct error estimate.
First, we have that,

}u ´ uN }V § C

c
inf

vPVN

}u ´ v}V ,
C

c
“

?
2,

due to Céa’s Lemma, which in turn relies on Lax-Milgram.

We also have,

inf
vPvN

}u ´ v}V § }u ´ PNu}V ,

where PN is the L
2-orthogonal projection onto V “ H

1
p .

Finally, we have our basic approximation estimate for Fourier series:

u P H
s

p ùñ }u ´ PNu}
H1 § N

1´s
.

One final piece of information: while Lax-Milgram establishes f P H
´1
p ñ u P H

1
p , one can also show that

f P H
r
p ñ u P H

r`2
p .

Thus, overall, we have that for any r ° ´1,

f P H
r

p ùñ u P H
r`2
p ùñ }u ´ uN }

H1 §
?
2N1´pr`2q À N

´pr`1q
.

This convergence rate is optimal (since it is the optimal rate of approximation).
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Error estimates

D16-S07(e)

One of the significant advantages of all this is that we have already laid all the groundwork we need to compute a
direct error estimate.
First, we have that,

}u ´ uN }V § C

c
inf

vPVN

}u ´ v}V ,
C

c
“

?
2,

due to Céa’s Lemma, which in turn relies on Lax-Milgram.

We also have,

inf
vPvN

}u ´ v}V § }u ´ PNu}V ,

where PN is the L
2-orthogonal projection onto V “ H

1
p .

Finally, we have our basic approximation estimate for Fourier series:

u P H
s

p ùñ }u ´ PNu}
H1 § N

1´s
.

One final piece of information: while Lax-Milgram establishes f P H
´1
p ñ u P H

1
p , one can also show that

f P H
r
p ñ u P H

r`2
p .

Thus, overall, we have that for any r ° ´1,

f P H
r

p ùñ u P H
r`2
p ùñ }u ´ uN }

H1 §
?
2N1´pr`2q À N

´pr`1q
.

This convergence rate is optimal (since it is the optimal rate of approximation).
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A “strong” form Fourier-Galerkin method

D16-S08(a)

Sometimes in practice a “strong” version of the Fourier-Galerkin method will be implemented. This approach directly
imposes the Galerkin condition on the strong PDE form:

@´u
2 ` u, v

D “ xf, vy , v P V.

Note that this is not unreasonable since if uN is smooth enough, we have,
@´u

2
N
, v

D “ @
u

1
N
, v

1D
,

which implies that the strong form above is exactly equivalent to our first weak formulation that employed bilinear
forms.

On an implementation level, the strong form can be implemented by taking v “ �k for every |k| § N . For a fixed k,
this reads,

C
ÿ

|`|§N

´pi`q2pu`�`,�k

G
` xuN ,�ky “ xf,�ky .

This is exactly,

xD2pu “ pf ,

that is equivalent to the previous Fourier-Galerkin scheme we derived.

Caution: It is not always the case that the strong variational form and weak variational form coincide.
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A “strong” form Fourier-Galerkin method

D16-S08(b)

Sometimes in practice a “strong” version of the Fourier-Galerkin method will be implemented. This approach directly
imposes the Galerkin condition on the strong PDE form:

@´u
2 ` u, v

D “ xf, vy , v P V.

Note that this is not unreasonable since if uN is smooth enough, we have,
@´u

2
N
, v

D “ @
u

1
N
, v

1D
,

which implies that the strong form above is exactly equivalent to our first weak formulation that employed bilinear
forms.

On an implementation level, the strong form can be implemented by taking v “ �k for every |k| § N . For a fixed k,
this reads,

C
ÿ

|`|§N

´pi`q2pu`�`,�k

G
` xuN ,�ky “ xf,�ky .

This is exactly,

xD2pu “ pf ,

that is equivalent to the previous Fourier-Galerkin scheme we derived.

Caution: It is not always the case that the strong variational form and weak variational form coincide.
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A “strong” form Fourier-Galerkin method

D16-S08(c)

Sometimes in practice a “strong” version of the Fourier-Galerkin method will be implemented. This approach directly
imposes the Galerkin condition on the strong PDE form:

@´u
2 ` u, v

D “ xf, vy , v P V.

Note that this is not unreasonable since if uN is smooth enough, we have,
@´u

2
N
, v

D “ @
u

1
N
, v

1D
,

which implies that the strong form above is exactly equivalent to our first weak formulation that employed bilinear
forms.

On an implementation level, the strong form can be implemented by taking v “ �k for every |k| § N . For a fixed k,
this reads,

C
ÿ

|`|§N

´pi`q2pu`�`,�k

G
` xuN ,�ky “ xf,�ky .

This is exactly,

xD2pu “ pf ,

that is equivalent to the previous Fourier-Galerkin scheme we derived.

Caution: It is not always the case that the strong variational form and weak variational form coincide.
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Beyond Fourier-Galerkin

D16-S09(a)

It’s worthwhile to mention how this error analysis might be generalized to another problem or setup:
– The crucial components were Céa’s Lemma and fundamental approximation estimates
– There is little theoretical difference if the spatial domain is multidimensional, or if the basis basis functions are

different.
– For variable coefficient problems, e.g.,

´ d

dx

ˆ
p2 ` sinxq d

dx
upxq

˙
` upxq “ fpxq,

the main difficulty is computational: the term p2 ` sinxq results in the need to compute more complicted inner
products, e.g.,

@p2 ` sinxq�1
k

pxq,�1
`
pxqD

.

This is a computational issue, but does not adversely affect theory.
– For non-periodic problems: the theoretical strategies are quite similar, and much of the marginal extra work

involves fundamental approximation estimates for non-periodic basis functions
– Time-dependent problems require somewhat different theoretical strategies, but stability is a big piece of the

puzzle.
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Fourier-Collocation

D16-S10(a)

The Fourier collocation strategy uses a very similar approach to the Galerkin case.

´u
2pxq ` upxq “ fpxq, periodic BC’s

As with the Galerkin method, our trial space U is the Fourier space:

u P spant�kpxqukP , �kpxq “ 1?
2⇡

e
ikx

.

However, our test space V is formally defined by Dirac functions centered at the grid points:

V “ span t�xmu
mPr2N`1s , xm “ 2⇡pm ´ 1q

2N ` 1
.

I.e., our weighted residual method in the collocation setup is quite simple:

´u
2
N

pxmq ` uN pxmq “ fpxmq, m P r2N ` 1s.

Equivalently, we enforce the condition,

INRpuN q “ 0,

which is an exact equality since zero residual on interpolation nodes implies that the interpolant is 0.

This method is quite informal as we simply enforce pointwise zero residual.
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Fourier-Collocation

D16-S10(b)

The Fourier collocation strategy uses a very similar approach to the Galerkin case.

´u
2pxq ` upxq “ fpxq, periodic BC’s

As with the Galerkin method, our trial space U is the Fourier space:

u P spant�kpxqukP , �kpxq “ 1?
2⇡

e
ikx

.

However, our test space V is formally defined by Dirac functions centered at the grid points:

V “ span t�xmu
mPr2N`1s , xm “ 2⇡pm ´ 1q

2N ` 1
.

I.e., our weighted residual method in the collocation setup is quite simple:

´u
2
N

pxmq ` uN pxmq “ fpxmq, m P r2N ` 1s.

Equivalently, we enforce the condition,

INRpuN q “ 0,

which is an exact equality since zero residual on interpolation nodes implies that the interpolant is 0.

This method is quite informal as we simply enforce pointwise zero residual.
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Implementation

D16-S11(a)

Recall some Fourier notation:

uN pxq “
ÿ

|k|§N

puk�kpxq, pu “

¨

˚̋
pu´N

...
puN

˛

‹‚, u “

¨

˚̋
upx1q

...
upxM q

˛

‹‚.

ru “ rV ˚
u, u “ M

2⇡
rV ru.

There are two computational options for implementing collocation:
– Store/solve for pu as degrees of freedom
– Store/solve for u as degrees of freedom.

The latter, being more consistent with the idea of collocation, is more standard.

To implement such a scheme, the difficult part is really to compute u
2
N

pxmq. I.e., we must differentiate twice and
evaluate at xm. This can be accomplished by:

1. Transform u to pu. (Apply rV ˚
.)

2. Twice differentiate uN “ ∞
puk�k. (Apply diagpp´Nq2, ¨ ¨ ¨ , N2q.)

3. Transform pu back to u. (Apply M

2⇡
rV .)
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Implementation

D16-S11(b)

Recall some Fourier notation:

uN pxq “
ÿ

|k|§N

puk�kpxq, pu “

¨

˚̋
pu´N

...
puN

˛

‹‚, u “

¨

˚̋
upx1q

...
upxM q

˛

‹‚.

ru “ rV ˚
u, u “ M

2⇡
rV ru.

There are two computational options for implementing collocation:
– Store/solve for pu as degrees of freedom
– Store/solve for u as degrees of freedom.

The latter, being more consistent with the idea of collocation, is more standard.

To implement such a scheme, the difficult part is really to compute u
2
N

pxmq. I.e., we must differentiate twice and
evaluate at xm. This can be accomplished by:

1. Transform u to pu. (Apply rV ˚
.)

2. Twice differentiate uN “ ∞
puk�k. (Apply diagpp´Nq2, ¨ ¨ ¨ , N2q.)

3. Transform pu back to u. (Apply M

2⇡
rV .)
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Differentiation matrices

D16-S12(a)

This allows us to create a nodal equivalent of the continuous operation,

uN pxq fiÑ ´u
2
N

pxq

This operation, with nodal degrees of freedom, is equivalent to applying the matrix,

ÄD2 :“ M

2⇡
rV

¨

˚̊
˚̋

p´Nq2
p´N ` 1q2

. . .
pNq2

˛

‹‹‹‚
rV ˚

.

This matrix is dense and is equivalent to a finite difference matrix whose stencil spans the entire grid. (Except we
approximate with Fourier Series and not polynomials.)

With some abuse of notation, let INu denote the interpolant (an element of VN ) corresponding to the unique
element whose grid values are u. Then,

IN
ÄD2u “ ´ pINuq2

,

i.e., ÄD2 accomplishes exact second differentiation for elements from VN .
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Differentiation matrices

D16-S12(b)

This allows us to create a nodal equivalent of the continuous operation,

uN pxq fiÑ ´u
2
N

pxq

This operation, with nodal degrees of freedom, is equivalent to applying the matrix,

ÄD2 :“ M

2⇡
rV

¨

˚̊
˚̋

p´Nq2
p´N ` 1q2

. . .
pNq2

˛

‹‹‹‚
rV ˚

.

This matrix is dense and is equivalent to a finite difference matrix whose stencil spans the entire grid. (Except we
approximate with Fourier Series and not polynomials.)

With some abuse of notation, let INu denote the interpolant (an element of VN ) corresponding to the unique
element whose grid values are u. Then,

IN
ÄD2u “ ´ pINuq2

,

i.e., ÄD2 accomplishes exact second differentiation for elements from VN .
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Fourier collocation scheme

D16-S13(a)

The Fourier collocation scheme associated to

´u
2pxq ` upxq “ fpxq, periodic BC’s,

then reads,

´
ÄD2 ` I

¯
u “ f , f “

¨

˚̋
fpx1q

...
fpxM q

˛

‹‚,

which is a linear system that can be solved for u, which uniquely identifies INu P VN .

Note here that
´
ÄD2 ` I

¯
is a dense matrix, so some advantages from the Fourier-Galerkin setting are missing.

What about error estimates? For this particularly simple equation and for smooth solutions uN
1, note that the

Fourier-Galerkin method for uN,G and the Fourier-Collocation method for uN,C are given by, respectively, is given
by:

PN

´
´u

2
N,G

` uN,G

¯
“ PNf, IN

´
´u

2
N,C

` uN,C

¯
“ INf,

where PN is the L
2-orthogonal projector onto VN .

1I.e., uN smooth enough so that x´u
2
N , vy “ xu1

N , v
1y, which is always true if uN , v P VN .
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Fourier collocation scheme

D16-S13(b)

The Fourier collocation scheme associated to

´u
2pxq ` upxq “ fpxq, periodic BC’s,

then reads,

´
ÄD2 ` I

¯
u “ f , f “

¨

˚̋
fpx1q

...
fpxM q

˛

‹‚,

which is a linear system that can be solved for u, which uniquely identifies INu P VN .

Note here that
´
ÄD2 ` I

¯
is a dense matrix, so some advantages from the Fourier-Galerkin setting are missing.

What about error estimates? For this particularly simple equation and for smooth solutions uN
1, note that the

Fourier-Galerkin method for uN,G and the Fourier-Collocation method for uN,C are given by, respectively, is given
by:

PN

´
´u

2
N,G

` uN,G

¯
“ PNf, IN

´
´u

2
N,C

` uN,C

¯
“ INf,

where PN is the L
2-orthogonal projector onto VN .

1I.e., uN smooth enough so that x´u
2
N , vy “ xu1

N , v
1y, which is always true if uN , v P VN .
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Collocation error estimates, I

D16-S14(a)

PN

´
´u

2
N,G

` uN,G

¯
“ PNf, IN

´
´u

2
N,C

` uN,C

¯
“ INf,

Since ´u
2
N

` u P VN , then

IN

´
´u

2
N,C

` uN,C

¯
“ PN

´
´u

2
N,C

` uN,C

¯
,

and therefore the difference �uN :“ uN,G ´ uN,C satisfies,

PN

`´�u
2
N

` �uN

˘ “ ANf,

where ANf “ PNf ´ INf is the aliasing error for f .

Hence, the error between uN,C and uN,G is given by the solution to ´u
2 ` u “ g, where g is the aliasing error.

At the discrete level, this is,
´

xD2 ` I
¯
�uN “

´
pf ´ rf

¯
,

where rf are the expansion coefficients for f computed using interpolation IN .
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Collocation error estimates, I

D16-S14(b)

PN

´
´u

2
N,G

` uN,G

¯
“ PNf, IN

´
´u

2
N,C

` uN,C

¯
“ INf,

Since ´u
2
N

` u P VN , then

IN

´
´u

2
N,C

` uN,C

¯
“ PN

´
´u

2
N,C

` uN,C

¯
,

and therefore the difference �uN :“ uN,G ´ uN,C satisfies,

PN

`´�u
2
N

` �uN

˘ “ ANf,

where ANf “ PNf ´ INf is the aliasing error for f .

Hence, the error between uN,C and uN,G is given by the solution to ´u
2 ` u “ g, where g is the aliasing error.

At the discrete level, this is,
´

xD2 ` I
¯
�uN “

´
pf ´ rf

¯
,

where rf are the expansion coefficients for f computed using interpolation IN .

A. Narayan (U. Utah – Math/SCI) Math 6630: Fourier spectral methods, I



Collocation error estimates, II

D16-S15(a)

Therefore, the norm of �uN satisfies,

}�uN }2 §
››››
´

xD2 ` I
¯´1

››››
2

}pf ´ rf}2

“
››››
´

xD2 ` I
¯´1

››››
2

}ANf}
L2

§ }ANf}
L2 À N

´r
.

where we have assumed f P H
r
p .

Chaining this with our H
1
p -norm estimate form u ´ PNu yields,

f P H
r

p ùñ }u ´ uN,C}
L2 À N

´r
,

where we have used the fact that f P H
r
p implies that u P H

r`2
p .

A finer estimate can be constructed with sharper treatement of the last inequality in the estimate for }�uN }2.
(I.e., the estimate we’ve derived is not optimal, but one can derive an optimal estimate.)

One can also construct an estimate in V “ H
1
p .
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Collocation error estimates, II

D16-S15(b)

Therefore, the norm of �uN satisfies,

}�uN }2 §
››››
´

xD2 ` I
¯´1

››››
2

}pf ´ rf}2

“
››››
´

xD2 ` I
¯´1

››››
2

}ANf}
L2

§ }ANf}
L2 À N

´r
.

where we have assumed f P H
r
p .

Chaining this with our H
1
p -norm estimate form u ´ PNu yields,

f P H
r

p ùñ }u ´ uN,C}
L2 À N

´r
,

where we have used the fact that f P H
r
p implies that u P H

r`2
p .

A finer estimate can be constructed with sharper treatement of the last inequality in the estimate for }�uN }2.
(I.e., the estimate we’ve derived is not optimal, but one can derive an optimal estimate.)

One can also construct an estimate in V “ H
1
p .
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Galerkin vs collocation, I

D16-S16(a)

For the particular example we’ve considered:

In practice, both the Galerkin and collocation schemes behave quite similarly for smooth u.

Both schemes can utilize the FFT: For the Galerkin method this is straightforward. For collocation, the application
v fiÑ xD2 can be accomplished by sandwiching application of the (diagonal) matrix xD2 with the forward/inverse FFT.

If quadrature/interpolation is used to approximate pf in the Galerkin scheme, then the schemes produce identical
solutions.

The property is due to the equation we have considered. For example, if we instead consider,

´u
2pxq ` p2 ` sinxqupxq “ fpxq,

then the Galerkin/collocation discretizations for the left hand side are not the same, and hence one must augment
the previous analysis to estimate the discrepancy.

In general, it’s easier to prove estimates for Galerkin methods.
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Galerkin vs collocation, I

D16-S16(b)

For the particular example we’ve considered:

In practice, both the Galerkin and collocation schemes behave quite similarly for smooth u.

Both schemes can utilize the FFT: For the Galerkin method this is straightforward. For collocation, the application
v fiÑ xD2 can be accomplished by sandwiching application of the (diagonal) matrix xD2 with the forward/inverse FFT.

If quadrature/interpolation is used to approximate pf in the Galerkin scheme, then the schemes produce identical
solutions.

The property is due to the equation we have considered. For example, if we instead consider,

´u
2pxq ` p2 ` sinxqupxq “ fpxq,

then the Galerkin/collocation discretizations for the left hand side are not the same, and hence one must augment
the previous analysis to estimate the discrepancy.

In general, it’s easier to prove estimates for Galerkin methods.
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Galerkin vs collocation, II

D16-S17(a)

Collocation is more conceptually easy to implement, although constructing the differentiation matrix is somewhat
nontrivial, even if one uses the FFT.

Nevertheless, an example such as,

´u
2pxq ` upxq

2 ` sinx
“ fpxq,

shows when collocation is more straightforward than Galerkin.

Consider, in particular, when there are nonlinear terms in the equation: Galerkin methods can be difficult to
implement.

In constrats, the collocation discretization of the above corresponds to

´u
2
N

pxmq ` uN pxmq
2 ` sinxm

“ fpxmq, m P rMs,

which is straightforward to implement as it is linear in uN .
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Galerkin vs collocation, III

D16-S18(a)

One can borrow the interpolation idea from collocation to aid in approximating Galerkin quantities. I.e., the Galerkin
scheme requires us to enforce,

PN

ˆ
´u

2
N

pxq ` uN pxq
2 ` sinx

˙
“ PNfpxq,

and computing PN puN {p2 ` sinxqq is the difficult part. However, we could approximate this by:

PN

`´u
2
N

pxq˘ ` IN

ˆ
uN pxq

2 ` sinx

˙
“ PNfpxq,

which is easy to implement, as INuN {p2 ` sinxq is computed by evaluating at the gridpoints xm and then taking a
DFT.

This type of approximation of projections (in particular of nonlinear terms) is called a pseudospectral approximation.
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