Math 6620: Analysis of Numerical Methods, Il

Interpolation with Fourier Series
See Hesthaven, S. Gottlieb, and D. Gottlieb 2007, Chapters 2-3,
Canuto et al. 2011, Chapter 2.1,

Shen, Tang, and Wang 2011, Chapter 2

Akil Narayan?

1Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

UNIVERSITY §.,@r//§

OF UTAH www.sci.utah.edu

A. Narayan (U. Utah — Math/SCI) Math 6620: Approximation with Fourier Series



Fourier Series approximations D14-S02(a)

We have established that Fourier series approximations upy,

un () = U ¢ (), ¢ (z) = e'h e, up = {u, ¢y,
o Vor

have orders of convergence that depend on the smoothness of u:

we Hy = |u—un|p2 <N_SHUHH§.

Smoothness = Compressibility
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Fourier Series approximations D14-S02(b)

We have established that Fourier series approximations upy,

un () = U ¢ (), ¢ (z) = e'h e, up = {u, ¢y,
o Vor

have orders of convergence that depend on the smoothness of u:

we Hy = |u—un|p2 <N_SHUHH§.

Smoothness = Compressibility

One major outstanding question is how we actually compute 4y in practice.
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Quadrature D14-S03(a)
The expansion coefficients require computing an integral,

~

2
U = LJ 7Tu(ac)e_“mdac,
A 21 Jo

which can be intractable, even if an explicit formula for w is available.
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Quadrature D14-S03(b)
The expansion coefficients require computing an integral,

~

1 27 )
Up = —f u(x)e”* % de,
A 21 Jo
which can be intractable, even if an explicit formula for w is available.

A standard recourse is to approximate the integral with quadrature:

1 27 ik M \/ﬁ ; 271—(] - 1)
— w(z)e” " dx ~ wy, iu(x;), Wi i = ——e kTG r; = ———>
\/%fo (2) ]Z:l ki u(T;) k,j M J M

where we have made particular choices:
— x; are equispaced on [0, 27] for j € [M]

— wy,j correspond to a uniform quadrature rule
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Quadrature D14-S03(c)
The expansion coefficients require computing an integral,

~

2
U = LJ 7Tu(ac)e_“mda:,
A 21 Jo

which can be intractable, even if an explicit formula for w is available.

A standard recourse is to approximate the integral with quadrature:

1 27 ik M \/ﬁ ; 271—(] - 1)
— w(z)e” " dx ~ wy, iu(x;), Wi i = ——e kTG r; = ———>
\/%fo (2) ]Z:l ki u(T;) k,j M J M

where we have made particular choices:

— x; are equispaced on [0, 27] for j € [M]

mmber 0 10

— We'll also assume that M = 2N + 1. (Quadrature nodes = expansion coefficients)

— wy,j correspond to a uniform quadrature rule

Note that this is just the trapezoid rule on [0, 27] with periodic boundary conditions.

One can make other choices, but these choices are most convenient for discussing the major concepts surrounding
theory and computation.
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Quadrature as linear algebra D14-S04(a)

A V27 om(j — 1
Up ~ Uy = E wk,ju(:cj), Wy j = ——¢€ tREg rj = ———>.
= M M

We compute these coefficients for all |k| < N, with M = 2N + 1.
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Quadrature as linear algebra D14-S04(b)

VT ik 2m(j — 1)

M
ak X ﬂk = Z wk,ju(:vj), Wk j = —F—€ > Try; =
= M M

We compute these coefficients for all |k| < N, with M = 2N + 1.

A simple implementation quadrature of amounts to matrix-vector algebra:

u(xy) U_ N
u(x2) U_N+1 .
u = , U = — u=V u,

where V' is the conjugate transpose of V', which in turn is given by,

N o | | | o
V = MV’ V = ’U—|N v—1|\7+1 ’U|N , Vi = A/ Md)k(w),
and & = (x1,22,...,27) 7.
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Duality of Fourier Series with quadrature D14-S05(a)

N 5 | | | [2
V = MWV, V = 'U—|N v—1|\7+1 ’U|N : v = Mﬁqbk(w),

A somewhat straightforward computation shows:

& 1 (L—k)2m(j—1)/M 1 &t
S eile-R2n(i-1)/ 3
) .

M 4

(vg,vp) = % (ei(g_k)gﬂ/M)j |

J

W
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Duality of Fourier Series with quadrature D14-S05(b)

N o | | | o
V = MV, V = 'U—|N v—1|\7+1 ’U|N : vk=\/M¢k(fB),

A somewhat straightforward computation shows:

1 G a—mzroym L O (i myzn/m\?
_ 1(—k)2w(j— _ 1(—k)2m
(ve, vk Mj;e M ;0 (e ) !

Thus, in particular if £ = k then {vy,vg) =1, and for £ # k and |{ — k| < M — 1:

1— (ei(é—k:)Qw/M)M
=0

1
(ve, vp) = M 1_ eil—k)2r/M

l.e., {v} k<N are orthonormal vectors.
3
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Duality of Fourier Series with quadrature D14-S05(c)

N o | | | o
V = MV, V = 'U—|N v—1|\7+1 ’U|N : vk=\/M¢k(fB),

A somewhat straightforward computation shows:

1 G a—mzroym L O (i myzn/m\?
_ 1(—k)2w(j— _ 1(—k)2m
(ve, vk Mj;e M ;0 (e ) !

Thus, in particular if £ = k then {vy,vg) =1, and for £ # k and | — k| < M — 1:

1— (ei(é—k:)Qw/M)M
=0

1
e, v = o ci(—k)2m/M
l.e., {v}|x|<n are orthonormal vectors.

This shows the important property that V' is a unitary matrix:

V¥V =T — VvV 1=v¥*
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Inverting the Fourier Series D14-S06(a)

Putting everything together:

3=V, V=4V, vl = v,
M
This implies that:
~ —1 M _ M M ~
u= (V) a=n o (VF) a =y V= Vi
T 2T 2T
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Inverting the Fourier Series D14-S06(b)

Putting everything together:

~ ~ 2
i = V¥, V=4/Zv, Vvl = v,
M
This implies that:
~ —1 M _ M M ~
u= (V) a=y o (VH) Ta = va = V.
27 27 21
l.e., the map between u and w is invertible and quite explicit:
~ M ~
U = V*u, u=—Vu.
21

This invertible map is called the Discrete Fourier Transform (DFT). As a consequence of V' being unitary, we have
also shown that the DFT is a (scaled) isometry,

27
21 ~
| e ~ Tl = a3,

which is the discrete analogue of Parseval's identity.
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The Fast Fourier Transform, | D14-S07(a)

The inverse/DFT is relatively expensive:

O(M?) ~ ~ O(M?) M ~
T
One of the most well-known algorithms is the fast Fourier transform, which is a fast algorithm for accomplishing the

: : ook
particular matrix-vector multiplication V' .

It is simpler to explain the basic idea if M is even, in which case we have:

—M N ke v k27 (j—1)/M
2. — N~ thT; _ N ,—tk2m(g—
muk J;l’LL(azj)e j;lu(m])e
= Z u(a;)e~ 2w —1/M 4 Z w(waj_1)e k2w (2—1)/M
j=1 j=1
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The Fast Fourier Transform, | D14-S07(b)

The inverse/DFT is relatively expensive:

2y o 2y M ~
u M g, 3 2) —Vu
T

One of the most well-known algorithms is the fast Fourier transform, which is a fast algorithm for accomplishing the
: : e ook
particular matrix-vector multiplication V' .

1 m° op ~— M

It is simpler to explain the basic idea if M is even, in which case we have:

Ve
M i/‘[: 1k % ( ) k27 (j—1)/M M
—tg = ) u(zj)e” " = > wu(z;)e” TV M 10 0
27'(' j=1 j=1 2~ (2 J 0}0 —~ /M/Z
= Z u(a;)e~ 2w —1/M 4 Z w(waj_1)e k2w (2—1)/M
J=1 j=1
M /2 | M2
= Z w(zoy)e F2m2G—1)/M | gik2m/M Z u(za;_1)e k2T (23-2)/M
Jj=1 j=1

Note that the last two sums are M /2-point DFT coefficients associated with half the data (either at x2; or at
Ll’:gj_l).

l.e., with some book-keeping, we can compute the M-point DFT using 2 M /2-point DFT's.
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The Fast Fourier Transform, Il

D14-S08(a)

This logic can be repeated, showing that actually we can compute the M-point DFT using J (M /J)-point DFT's,
where J is a power of two. This yields the simplest, radix 2 fast Fourier transform (FFT) algorithm.
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Through this divide-and-conquer strategy, an M-point DFT that naively requires O(M?) complexity can be

accomplished in O(M log M) time.
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Interpolation D14-S09(a)
U = ‘N/*u, u = %‘N/ﬁ

We have introduced the DFT via quadrature, but an alternative and illustrative viewpoint is interpolation.

Note that the coefficients u are determined by the conditions,

M~ | | o\
—Vu=u = b N P_ni1 o Dy |u=u.
o ] |

Note that these are “just” interpolation conditions for the % at the data points x;, j € [M].
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Interpolation D14-S09(b)

< o M ~
u=V u, u=—Vu.

We have introduced the DFT via quadrature, but an alternative and illustrative viewpoint is interpolation.

Note that the coefficients u are determined by the conditions,

M~ | | o\
—Vu=u = b N P_ni1 o Dy |u=u.
o ] |

Note that these are “just” interpolation conditions for the % at the data points x;, j € [M].
Hence, un(z) = ZleN U@ () interpolates the data w.

We have already concluded that this interpolation problem is unisolvent. Hence, there are cardinal basis functions
¢;(xz), j € [M] such that,

un (@) = ) u(z;)l(z), Ci(zr) = 6,
JE[M]

l.e., un has a Lagrange form.
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Cardinal Lagrange basis D14-S10(a)

The cardinal Lagrange functions yield insight into the interpolation process.

1% —mMmmMm™—————F————

1.00
0.75
0.50
0.25

0.00 ¢

o5t .~ Y Y
0.00 0.25 0.50 0.75 1.00
X/2m

Figure 2.3 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

Note that interpolation implies

. ikx - ~ _
u(z) € Vi := span {e }IkléN — Inyu: |k|Z<1N Up ok () = u(x).
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Aliasing D14-S11(a)

The fact that our DFT is an interpolation process reveals a significant issue that we must be cognizant of: aliasing
error.

Figure 2.7 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007
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Aliasing D14-S11(b)

The fact that our DFT is an interpolation process reveals a significant issue that we must be cognizant of: aliasing
error.

Figure 2.7 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007
So, for example, even if <€M$, ¢ (x)) =0 for £ > N, it's possible that Inett® # 0.

l.e., the interpolation/DFT procedure is a projection operator, it's just an oblique one.
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Aliasing error D14-S12(a)

Aliasing is not just an academic curiosity: with Py the L?-orthogonal projection operator onto
VN = span {eikx}
N p |k|<N 3

recall that w € H; implies that |u — Pyullp2 < N7%.

Ok, but what about Inyu?
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Aliasing error D14-S12(b)

Aliasing is not just an academic curiosity: with Py the L?-orthogonal projection operator onto
VN = span {eikx} ,
|k|<N

recall that w € H; implies that |u — Pyullp2 < N7%.
Ok, but what about Inyu?
The main strategy to understanding this is to estimate the aliasing error. Note that for the L? norm,

| = Inul| = || (u = Pyu) + (Pyu — Inu) | < |u— Pnul + [Pyu — Inul
=t |u — Pnul + |Anul,

where we have defined the aliasing error Apnu.
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Bounding the aliasing error D14-S13(a)

Anyu = Pyu— Inu

The following observations are crucial:

— If ue Vy, then Iyu = Pyu = u, so Ayu = 0. Therefore, Ayu = An(I — Py)u.
The aliasing error is only affected by truncation error.
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Bounding the aliasing error D14-S13(b)

Anu = Pnyu— Inu

The following observations are crucial:
— If ue Vy, then Iyu = Pyu = u, so Ayu = 0. Therefore, Ayu = An(I — Py)u.
The aliasing error is only affected by truncation error.
— We know that (I — Py )u is small. Therefore, if Ay is “behaves well’, then Anu will be small.
The truncation error is small, but does Apx amplify small inputs?
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Bounding the aliasing error

Anu = Pnyu— Inu

The following observations are crucial:
— If ue Vy, then Iyu = Pyu = u, so Ayu = 0. Therefore, Ayu = An(I — Py)u.
The aliasing error is only affected by truncation error.

— We know that (I — Py )u is small. Therefore, if Ay is “behaves well’, then Anu will be small.
The truncation error is small, but does Apx amplify small inputs?

— Ap is well-behaved: for |k| < N,

Anel(FT@N+1))z _ jika

)
and thus in particular,

w= Y Gpgr(®) = U= ) Upipeni1)
|EAEN LeZ

Apn does not amplify small inputs.

D14-513(c)

A. Narayan (U. Utah — Math/SCI)

Math 6620: Approximation with Fourier Series



Bounding the aliasing error D14-S13(d)

Anu = Pnyu— Inu

The following observations are crucial:
— If ue Vy, then Iyu = Pyu = u, so Ayu = 0. Therefore, Ayu = An(I — Py)u.
The aliasing error is only affected by truncation error.
— We know that (I — Py )u is small. Therefore, if Ay is “behaves well’, then Anu will be small.
The truncation error is small, but does Apx amplify small inputs?
— Ap is well-behaved: for |k| < N,

Anel(FT@N+1))z _ jika

Y

and thus in particular,

w= Y Gpdr(®) = U= ) Upipeni1)
k| <N (e

Apn does not amplify small inputs.
Therefore, if 4y p2n1) decays quickly for large |£], then we can expect the aliased coefficients i to be “close” to

Uy,
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Interpolation estimates D14-S14(a)
(¢) 2z
[HECTR L

While we have only discussed the high-level ideas, going through the details produces the following estimate:

Theorem
Assume u € Hj with s > 1/2. Then

|lu—Inulp2 S N7°|ulas

lu — Inular < N“E7)||u| gs, r<s.

Note that this is exactly the asymptotic behavior for the exact orthogonal projector Py;. Thus, one can expect the
DFT to produce good results.
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The DFT in practice

D14-S15(a)
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Figure 2.4 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007
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The DFT in practice D14-S15(b)
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Figure 2.4 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

u(x) = sin(z/2)

A. Narayan (U. Utah — Math/SCI) Math 6620: Approximation with Fourier Series



References | D14-S16(a)

@ Canuto, Claudio et al. (2011). Spectral Methods: Fundamentals in Single Domains. 1st ed. 2006. Corr. 4th
printing 2010 edition. Berlin ; New York: Springer. ISBN: 978-3-540-30725-9.

@ Cooley, James W. and John W. Tukey (1965). “An Algorithm for the Machine Calculation of Complex Fourier
Series”. In: Mathematics of Computation 19.90, pp. 297-301. ISSN: 0025-5718, 1088-6842. DOI:
10.1090/S0025-5718-1965-0178586-1.

@ Hesthaven, Jan S., Sigal Gottlieb, and David Gottlieb (2007). Spectral Methods for Time-Dependent Problems.
Cambridge University Press. ISBN: 0-521-79211-8.

@ Shen, Jie, Tao Tang, and Li-Lian Wang (2011). Spectral Methods: Algorithms, Analysis and Applications.
Springer Science & Business Media. ISBN: 978-3-540-71041-7.

A. Narayan (U. Utah — Math/SCI) Math 6620: Approximation with Fourier Series


https://doi.org/10.1090/S0025-5718-1965-0178586-1

