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Fourier Series approximations D14-S02(a)

We have established that Fourier series approximations uN ,

uN pxq “
ÿ

|k|§N

puk�kpxq, �kpxq “ 1?
2⇡

e
ikx

, puk “ xu,�ky ,

have orders of convergence that depend on the smoothness of u:

u P H
s

p ùñ }u ´ uN }
L2 § N

´s}u}Hs
p
.

I.e.,

Smoothness ùñ Compressibility
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Fourier Series approximations D14-S02(b)

We have established that Fourier series approximations uN ,

uN pxq “
ÿ

|k|§N

puk�kpxq, �kpxq “ 1?
2⇡

e
ikx

, puk “ xu,�ky ,

have orders of convergence that depend on the smoothness of u:

u P H
s

p ùñ }u ´ uN }
L2 § N

´s}u}Hs
p
.

I.e.,

Smoothness ùñ Compressibility

One major outstanding question is how we actually compute puk in practice.
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Quadrature D14-S03(a)

The expansion coefficients require computing an integral,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx,

which can be intractable, even if an explicit formula for u is available.

A standard recourse is to approximate the integral with quadrature:

1?
2⇡

ª 2⇡

0
upxqe´ikxdx «

Mÿ

j“1

wk,jupxjq, wk,j “
?
2⇡

M
e

´ikxj , xj “ 2⇡pj ´ 1q
M

,

where we have made particular choices:
– xj are equispaced on r0, 2⇡s for j P rMs
– wk,j correspond to a uniform quadrature rule
– We’ll also assume that M “ 2N ` 1. (Quadrature nodes “ expansion coefficients)

Note that this is just the trapezoid rule on r0, 2⇡s with periodic boundary conditions.

One can make other choices, but these choices are most convenient for discussing the major concepts surrounding
theory and computation.
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Quadrature D14-S03(b)

The expansion coefficients require computing an integral,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx,

which can be intractable, even if an explicit formula for u is available.

A standard recourse is to approximate the integral with quadrature:

1?
2⇡

ª 2⇡

0
upxqe´ikxdx «

Mÿ

j“1

wk,jupxjq, wk,j “
?
2⇡

M
e

´ikxj , xj “ 2⇡pj ´ 1q
M

,

where we have made particular choices:
– xj are equispaced on r0, 2⇡s for j P rMs
– wk,j correspond to a uniform quadrature rule
– We’ll also assume that M “ 2N ` 1. (Quadrature nodes “ expansion coefficients)

Note that this is just the trapezoid rule on r0, 2⇡s with periodic boundary conditions.

One can make other choices, but these choices are most convenient for discussing the major concepts surrounding
theory and computation.
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Quadrature D14-S03(c)

The expansion coefficients require computing an integral,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx,

which can be intractable, even if an explicit formula for u is available.

A standard recourse is to approximate the integral with quadrature:

1?
2⇡

ª 2⇡

0
upxqe´ikxdx «

Mÿ

j“1

wk,jupxjq, wk,j “
?
2⇡

M
e

´ikxj , xj “ 2⇡pj ´ 1q
M

,

where we have made particular choices:
– xj are equispaced on r0, 2⇡s for j P rMs
– wk,j correspond to a uniform quadrature rule
– We’ll also assume that M “ 2N ` 1. (Quadrature nodes “ expansion coefficients)

Note that this is just the trapezoid rule on r0, 2⇡s with periodic boundary conditions.

One can make other choices, but these choices are most convenient for discussing the major concepts surrounding
theory and computation.
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Quadrature as linear algebra D14-S04(a)

puk « ruk :“
Mÿ

j“1

wk,jupxjq, wk,j “
?
2⇡

M
e

´ikxj , xj “ 2⇡pj ´ 1q
M

.

We compute these coefficients for all |k| § N , with M “ 2N ` 1.

A simple implementation quadrature of amounts to matrix-vector algebra:

u :“

¨

˚̊
˚̋

upx1q
upx2q

...
upxM q

˛

‹‹‹‚, ru :“

¨

˚̊
˚̋

ru´N

ru´N`1

...
ruN

˛

‹‹‹‚ ùñ ru “ rV ˚
u,

where rV ˚
is the conjugate transpose of rV , which in turn is given by,

rV “
c

2⇡

M
V , V “

¨

˝ v´N v´N`1 ¨ ¨ ¨ vN

˛

‚, vk “
c

2⇡

M
�kpxq,

and x “ px1, x2, . . . , xM qT .
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Quadrature as linear algebra D14-S04(b)

puk « ruk :“
Mÿ

j“1

wk,jupxjq, wk,j “
?
2⇡

M
e

´ikxj , xj “ 2⇡pj ´ 1q
M

.

We compute these coefficients for all |k| § N , with M “ 2N ` 1.

A simple implementation quadrature of amounts to matrix-vector algebra:

u :“

¨

˚̊
˚̋

upx1q
upx2q

...
upxM q

˛

‹‹‹‚, ru :“

¨

˚̊
˚̋

ru´N

ru´N`1

...
ruN

˛

‹‹‹‚ ùñ ru “ rV ˚
u,

where rV ˚
is the conjugate transpose of rV , which in turn is given by,

rV “
c

2⇡

M
V , V “

¨

˝ v´N v´N`1 ¨ ¨ ¨ vN

˛

‚, vk “
c

2⇡

M
�kpxq,

and x “ px1, x2, . . . , xM qT .
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Duality of Fourier Series with quadrature D14-S05(a)

rV “
c

2⇡

M
V , V “

¨

˝ v´N v´N`1 ¨ ¨ ¨ vN

˛

‚, vk “
c

2⇡

M
�kpxq,

A somewhat straightforward computation shows:

xv`,vky “ 1

M

Mÿ

j“1

e
ip`´kq2⇡pj´1q{M “ 1

M

M´1ÿ

j“0

´
e
ip`´kq2⇡{M

¯
j

,

Thus, in particular if ` “ k then xv`,vky “ 1, and for ` ‰ k and |` ´ k| § M ´ 1:

xv`,vky “ 1

M

1 ´ `
e
ip`´kq2⇡{M ˘M

1 ´ eip`´kq2⇡{M “ 0

I.e., tvu|k|§N are orthonormal vectors.

This shows the important property that V is a unitary matrix:

V ˚V “ I ùñ V ´1 “ V ˚
.
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Duality of Fourier Series with quadrature D14-S05(b)

rV “
c

2⇡

M
V , V “

¨

˝ v´N v´N`1 ¨ ¨ ¨ vN

˛

‚, vk “
c

2⇡

M
�kpxq,

A somewhat straightforward computation shows:

xv`,vky “ 1

M

Mÿ

j“1

e
ip`´kq2⇡pj´1q{M “ 1

M

M´1ÿ

j“0

´
e
ip`´kq2⇡{M

¯
j

,

Thus, in particular if ` “ k then xv`,vky “ 1, and for ` ‰ k and |` ´ k| § M ´ 1:

xv`,vky “ 1

M

1 ´ `
e
ip`´kq2⇡{M ˘M

1 ´ eip`´kq2⇡{M “ 0

I.e., tvu|k|§N are orthonormal vectors.

This shows the important property that V is a unitary matrix:

V ˚V “ I ùñ V ´1 “ V ˚
.
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Duality of Fourier Series with quadrature D14-S05(c)

rV “
c

2⇡

M
V , V “

¨

˝ v´N v´N`1 ¨ ¨ ¨ vN

˛

‚, vk “
c

2⇡

M
�kpxq,

A somewhat straightforward computation shows:

xv`,vky “ 1

M

Mÿ

j“1

e
ip`´kq2⇡pj´1q{M “ 1

M

M´1ÿ

j“0

´
e
ip`´kq2⇡{M

¯
j

,

Thus, in particular if ` “ k then xv`,vky “ 1, and for ` ‰ k and |` ´ k| § M ´ 1:

xv`,vky “ 1

M

1 ´ `
e
ip`´kq2⇡{M ˘M

1 ´ eip`´kq2⇡{M “ 0

I.e., tvu|k|§N are orthonormal vectors.

This shows the important property that V is a unitary matrix:

V ˚V “ I ùñ V ´1 “ V ˚
.
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Inverting the Fourier Series D14-S06(a)

Putting everything together:

ru “ rV ˚
u, rV “

c
2⇡

M
V , V ´1 “ V ˚

.

This implies that:

u “
´

rV ˚¯´1
ru “

c
M

2⇡

`
V ˚˘´1 ru “

c
M

2⇡
V ru “ M

2⇡
rV ru.

I.e., the map between u and ru is invertible and quite explicit:

ru “ rV ˚
u, u “ M

2⇡
rV ru.

This invertible map is called the Discrete Fourier Transform (DFT). As a consequence of V being unitary, we have
also shown that the DFT is a (scaled) isometry,

ª 2⇡

0
|upxq|2dx « 2⇡

M
}u}22 “ }ru}22,

which is the discrete analogue of Parseval’s identity.
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Inverting the Fourier Series D14-S06(b)

Putting everything together:

ru “ rV ˚
u, rV “

c
2⇡

M
V , V ´1 “ V ˚

.

This implies that:

u “
´

rV ˚¯´1
ru “

c
M

2⇡

`
V ˚˘´1 ru “

c
M

2⇡
V ru “ M

2⇡
rV ru.

I.e., the map between u and ru is invertible and quite explicit:

ru “ rV ˚
u, u “ M

2⇡
rV ru.

This invertible map is called the Discrete Fourier Transform (DFT). As a consequence of V being unitary, we have
also shown that the DFT is a (scaled) isometry,

ª 2⇡

0
|upxq|2dx « 2⇡

M
}u}22 “ }ru}22,

which is the discrete analogue of Parseval’s identity.
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The Fast Fourier Transform, I D14-S07(a)

The inverse/DFT is relatively expensive:

u
OpM2q›››››Ñ rV ˚

u, ru OpM2q›››››Ñ M

2⇡
rV .

One of the most well-known algorithms is the fast Fourier transform, which is a fast algorithm for accomplishing the
particular matrix-vector multiplication rV ˚

u.

It is simpler to explain the basic idea if M is even, in which case we have:

M?
2⇡

ruk “
Mÿ

j“1

upxjqe´ikxj “
Mÿ

j“1

upxjqe´ik2⇡pj´1q{M

“
M{2ÿ

j“1

upx2jqe´ik2⇡2pj´1q{M `
M{2ÿ

j“1

upx2j´1qe´ik2⇡p2j´1q{M

“
M{2ÿ

j“1

upx2jqe´ik2⇡2pj´1q{M ` e
ik2⇡{M

M{2ÿ

j“1

upx2j´1qe´ik2⇡p2j´2q{M
.

Note that the last two sums are M{2-point DFT coefficients associated with half the data (either at x2j or at
x2j´1).

I.e., with some book-keeping, we can compute the M -point DFT using 2 M{2-point DFT’s.
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The Fast Fourier Transform, I D14-S07(b)

The inverse/DFT is relatively expensive:

u
OpM2q›››››Ñ rV ˚

u, ru OpM2q›››››Ñ M

2⇡
rV .

One of the most well-known algorithms is the fast Fourier transform, which is a fast algorithm for accomplishing the
particular matrix-vector multiplication rV ˚

u.

It is simpler to explain the basic idea if M is even, in which case we have:

M?
2⇡

ruk “
Mÿ

j“1

upxjqe´ikxj “
Mÿ

j“1

upxjqe´ik2⇡pj´1q{M

“
M{2ÿ

j“1

upx2jqe´ik2⇡2pj´1q{M `
M{2ÿ

j“1

upx2j´1qe´ik2⇡p2j´1q{M

“
M{2ÿ

j“1

upx2jqe´ik2⇡2pj´1q{M ` e
ik2⇡{M

M{2ÿ

j“1

upx2j´1qe´ik2⇡p2j´2q{M
.

Note that the last two sums are M{2-point DFT coefficients associated with half the data (either at x2j or at
x2j´1).

I.e., with some book-keeping, we can compute the M -point DFT using 2 M{2-point DFT’s.
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The Fast Fourier Transform, II D14-S08(a)

This logic can be repeated, showing that actually we can compute the M -point DFT using J pM{Jq-point DFT’s,
where J is a power of two. This yields the simplest, radix 2 fast Fourier transform (FFT) algorithm.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

X(0)

X(8)

X(4)

X(12)

X(2)

X(10)

X(6)

X(14)

X(1)

X(9)

X(5)

X(13)

X(3)

X(11)

X(7)

X(15)

⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥

W0·0
16

W1·0
16

W2·0
16

W3·0
16

W4·0
16

W5·0
16

W6·0
16

W7·0
16

W0·1
16

W1·1
16

W2·1
16

W3·1
16

W4·1
16

W5·1
16

W6·1
16

W7·1
16

W0·0
8

W1·0
8

W2·0
8

W3·0
8

W0·1
8

W1·1
8

W2·1
8

W3·1
8

W0·0
8

W1·0
8

W2·0
8

W3·0
8

W0·1
8

W1·1
8

W2·1
8

W3·1
8

W0·0
4

W1·0
4

W0·1
4

W1·1
4

W0·0
4

W1·0
4

W0·1
4

W1·1
4

W0·0
4

W1·0
4

W0·1
4

W1·1
4

W0·0
4

W1·0
4

W0·1
4

W1·1
4

Through this divide-and-conquer strategy, an M -point DFT that naively requires OpM2q complexity can be
accomplished in OpM logMq time.
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Interpolation D14-S09(a)

ru “ rV ˚
u, u “ M

2⇡
rV ru.

We have introduced the DFT via quadrature, but an alternative and illustrative viewpoint is interpolation.

Note that the coefficients ru are determined by the conditions,

M

2⇡
rV ru “ u ùñ

¨

˝ �´N
�´N`1 ¨ ¨ ¨ �

N

˛

‚ru “ u.

Note that these are “just” interpolation conditions for the ru at the data points xj , j P rMs.

Hence, uN pxq “ ∞
|k|§N

ruk�kpxq interpolates the data u.

We have already concluded that this interpolation problem is unisolvent. Hence, there are cardinal basis functions
`jpxq, j P rMs such that,

uN pxq “
ÿ

jPrMs
upxjq`jpxq, `jpxrq “ �j,r.

I.e., uN has a Lagrange form.
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Interpolation D14-S09(b)

ru “ rV ˚
u, u “ M

2⇡
rV ru.

We have introduced the DFT via quadrature, but an alternative and illustrative viewpoint is interpolation.

Note that the coefficients ru are determined by the conditions,

M

2⇡
rV ru “ u ùñ

¨

˝ �´N
�´N`1 ¨ ¨ ¨ �

N

˛

‚ru “ u.

Note that these are “just” interpolation conditions for the ru at the data points xj , j P rMs.

Hence, uN pxq “ ∞
|k|§N

ruk�kpxq interpolates the data u.

We have already concluded that this interpolation problem is unisolvent. Hence, there are cardinal basis functions
`jpxq, j P rMs such that,

uN pxq “
ÿ

jPrMs
upxjq`jpxq, `jpxrq “ �j,r.

I.e., uN has a Lagrange form.
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Cardinal Lagrange basis D14-S10(a)
The cardinal Lagrange functions yield insight into the interpolation process.

2.2 Discrete trigonometric polynomials 27

0.00 0.25 0.50 0.75 1.00
−0.25

0.00

0.25

0.50

0.75

1.00

1.25

x /2p

g0(x) g2(x) g4(x) g6(x)

Figure 2.3 The interpolation polynomial, g j (x), for N = 8 for various values of j .

We still need to show that g j (x) ∈ B̃N . Clearly, g j (x) ∈ B̂N as g j (x) is a
polynomial of degree ≤ N/2. However, since

1
2

e−i N
2 x j = 1

2
ei N

2 x j = (−1) j

2
,

and, by convention ũ−N/2 = ũN/2, we do not get any contribution from the term
sin( N

2 x), hence g j (x) ∈ B̃N .
QED

The discrete Fourier series of a function has convergence properties very
similar to those of the continuous Fourier series approximation. In particular,
the discrete approximation is pointwise convergent for C1

p[0, 2π ] functions and
is convergent in the mean provided only that u(x) ∈ L2[0, 2π ]. Moreover, the
continuous and discrete approximations share the same asymptotic behavior, in
particular having a convergence rate faster than any algebraic order of N−1 if
u(x) ∈ C∞

p [0, 2π ]. We shall return to the proof of these results in Section 2.3.2.
Let us at this point illustrate the behavior of the discrete Fourier series by

applying it to the examples considered previously.

Example 2.7 Consider the C∞
p [0, 2π ] function

u(x) = 3
5 − 4 cos(x)

.

In Figure 2.4 we plot the discrete Fourier series approximation of u and the
pointwise error for increasing N . This example confirms the spectral conver-
gence of the discrete Fourier series. We note in particular that the approximation
error is of the same order as observed for the continuous Fourier series in Exam-
ple 2.3. The appearance of “spikes” in the pointwise error approaching zero in
Figure 2.4 illustrates the interpolating nature of IN u(x), i.e., IN u(x j ) = u(x j )
as expected.

Figure 2.3 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

Note that interpolation implies

upxq P VN :“ span
!
e
ikx

)

|k|§N

ùñ INu :“
ÿ

|k|§N

ruk�kpxq “ upxq.
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Aliasing D14-S11(a)
The fact that our DFT is an interpolation process reveals a significant issue that we must be cognizant of: aliasing
error.

2.2 Discrete trigonometric polynomials 31

n = 6

n = −2

n = 10

Figure 2.7 Illustration of aliasing. The three waves, n = 6, n = −2 and n = −10
are all interpreted as a n = −2 wave on an 8-point grid. Consequently, the n = −2
appears as more energetic after the discrete Fourier transform than in the original
signal.

computationally different ways to approximate the derivative of a function. In
the following subsections, we assume that our function u and all its derivatives
are continuous and periodic on [0, 2π ].

Using expansion coefficients Given the values of the function u(x) at the
points x j , differentiating the basis functions in the interpolant yields

d
dx

IN u(x) =
∑

|n|≤N/2

inũneinx , (2.17)

where

ũn = 1
Nc̃n

N−1∑

j=0

u(x j )e−inx j ,

are the coefficients of the interpolant IN u(x) given in Equations (2.8)–(2.9).
Higher order derivatives can be obtained simply by further differentiating the
basis functions.

Note that, unlike in the case of the continuous approximation, the derivative
of the interpolant is not the interpolant of the derivative, i.e.,

IN
du
dx

̸= IN
d

dx
IN u, (2.18)

unless u(x) ∈ B̃N .

Figure 2.7 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

So, for example, even if
@
e
i`x

,�kpxqD “ 0 for ` ° N , it’s possible that INe
i`x ‰ 0.

I.e., the interpolation/DFT procedure is a projection operator, it’s just an oblique one.
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Aliasing D14-S11(b)
The fact that our DFT is an interpolation process reveals a significant issue that we must be cognizant of: aliasing
error.

2.2 Discrete trigonometric polynomials 31

n = 6

n = −2

n = 10

Figure 2.7 Illustration of aliasing. The three waves, n = 6, n = −2 and n = −10
are all interpreted as a n = −2 wave on an 8-point grid. Consequently, the n = −2
appears as more energetic after the discrete Fourier transform than in the original
signal.

computationally different ways to approximate the derivative of a function. In
the following subsections, we assume that our function u and all its derivatives
are continuous and periodic on [0, 2π ].

Using expansion coefficients Given the values of the function u(x) at the
points x j , differentiating the basis functions in the interpolant yields

d
dx

IN u(x) =
∑

|n|≤N/2

inũneinx , (2.17)

where

ũn = 1
Nc̃n

N−1∑

j=0

u(x j )e−inx j ,

are the coefficients of the interpolant IN u(x) given in Equations (2.8)–(2.9).
Higher order derivatives can be obtained simply by further differentiating the
basis functions.

Note that, unlike in the case of the continuous approximation, the derivative
of the interpolant is not the interpolant of the derivative, i.e.,

IN
du
dx

̸= IN
d

dx
IN u, (2.18)

unless u(x) ∈ B̃N .

Figure 2.7 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

So, for example, even if
@
e
i`x

,�kpxqD “ 0 for ` ° N , it’s possible that INe
i`x ‰ 0.

I.e., the interpolation/DFT procedure is a projection operator, it’s just an oblique one.
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Aliasing error D14-S12(a)

Aliasing is not just an academic curiosity: with PN the L
2-orthogonal projection operator onto

VN “ span
!
e
ikx

)

|k|§N

,

recall that u P H
s
p implies that }u ´ PNu}

L2 À N
´s.

Ok, but what about INu?

The main strategy to understanding this is to estimate the aliasing error. Note that for the L
2 norm,

}u ´ INu} “ } pu ´ PNuq ` pPNu ´ INuq } § }u ´ PNu} ` }PNu ´ INu}
“: }u ´ PNu} ` }ANu},

where we have defined the aliasing error ANu.
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Aliasing error D14-S12(b)

Aliasing is not just an academic curiosity: with PN the L
2-orthogonal projection operator onto

VN “ span
!
e
ikx

)

|k|§N

,

recall that u P H
s
p implies that }u ´ PNu}

L2 À N
´s.

Ok, but what about INu?

The main strategy to understanding this is to estimate the aliasing error. Note that for the L
2 norm,

}u ´ INu} “ } pu ´ PNuq ` pPNu ´ INuq } § }u ´ PNu} ` }PNu ´ INu}
“: }u ´ PNu} ` }ANu},

where we have defined the aliasing error ANu.
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Bounding the aliasing error D14-S13(a)

ANu “ PNu ´ INu

The following observations are crucial:
– If u P VN , then INu “ PNu “ u, so ANu “ 0. Therefore, ANu “ AN pI ´ PN qu.

The aliasing error is only affected by truncation error.
– We know that pI ´ PN qu is small. Therefore, if AN is “behaves well”, then ANu will be small.

The truncation error is small, but does AN amplify small inputs?
– AN is well-behaved: for |k| § N ,

ANe
ipk`p2N`1qqx “ e

ikx
,

and thus in particular,

u “
ÿ

|k|§N

puk�kpxq ùñ ruk “
ÿ

`P
puk``p2N`1q.

AN does not amplify small inputs.
Therefore, if puk``p2N`1q decays quickly for large |`|, then we can expect the aliased coefficients ruk to be “close” to
puk.
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Bounding the aliasing error D14-S13(b)

ANu “ PNu ´ INu

The following observations are crucial:
– If u P VN , then INu “ PNu “ u, so ANu “ 0. Therefore, ANu “ AN pI ´ PN qu.

The aliasing error is only affected by truncation error.
– We know that pI ´ PN qu is small. Therefore, if AN is “behaves well”, then ANu will be small.

The truncation error is small, but does AN amplify small inputs?
– AN is well-behaved: for |k| § N ,

ANe
ipk`p2N`1qqx “ e

ikx
,

and thus in particular,

u “
ÿ

|k|§N

puk�kpxq ùñ ruk “
ÿ

`P
puk``p2N`1q.

AN does not amplify small inputs.
Therefore, if puk``p2N`1q decays quickly for large |`|, then we can expect the aliased coefficients ruk to be “close” to
puk.
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Bounding the aliasing error D14-S13(c)

ANu “ PNu ´ INu

The following observations are crucial:
– If u P VN , then INu “ PNu “ u, so ANu “ 0. Therefore, ANu “ AN pI ´ PN qu.

The aliasing error is only affected by truncation error.
– We know that pI ´ PN qu is small. Therefore, if AN is “behaves well”, then ANu will be small.

The truncation error is small, but does AN amplify small inputs?
– AN is well-behaved: for |k| § N ,

ANe
ipk`p2N`1qqx “ e

ikx
,

and thus in particular,

u “
ÿ

|k|§N

puk�kpxq ùñ ruk “
ÿ

`P
puk``p2N`1q.

AN does not amplify small inputs.
Therefore, if puk``p2N`1q decays quickly for large |`|, then we can expect the aliased coefficients ruk to be “close” to
puk.
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Bounding the aliasing error D14-S13(d)

ANu “ PNu ´ INu

The following observations are crucial:
– If u P VN , then INu “ PNu “ u, so ANu “ 0. Therefore, ANu “ AN pI ´ PN qu.

The aliasing error is only affected by truncation error.
– We know that pI ´ PN qu is small. Therefore, if AN is “behaves well”, then ANu will be small.

The truncation error is small, but does AN amplify small inputs?
– AN is well-behaved: for |k| § N ,

ANe
ipk`p2N`1qqx “ e

ikx
,

and thus in particular,

u “
ÿ

|k|§N

puk�kpxq ùñ ruk “
ÿ

`P
puk``p2N`1q.

AN does not amplify small inputs.
Therefore, if puk``p2N`1q decays quickly for large |`|, then we can expect the aliased coefficients ruk to be “close” to
puk.

A. Narayan (U. Utah – Math/SCI) Math 6620: Approximation with Fourier Series



Interpolation estimates D14-S14(a)

While we have only discussed the high-level ideas, going through the details produces the following estimate:

Theorem
Assume u P H

s
p with s ° 1{2. Then

}u ´ INu}
L2 À N

´s}u}Hs .

}u ´ INu}Hr À N
´ps´rq}u}Hs , r † s.

Note that this is exactly the asymptotic behavior for the exact orthogonal projector PN . Thus, one can expect the
DFT to produce good results.
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The DFT in practice D14-S15(a)

28 Trigonometric polynomial approximation

Figure 2.4 (a) Discrete Fourier series approximation of Example 2.7 for
increasing resolution. (b) Pointwise error of approximation for increasing
resolution.

Figure 2.5 (a) Discrete Fourier series approximation of Example 2.8 for increasing
resolution. (b) Pointwise error of approximation for increasing resolution.

Example 2.8 Consider again the function

u(x) = sin
( x

2

)
,

and recall that u(x) ∈ C0
p[0, 2π ]. In Figure 2.5 we show the discrete Fourier

series approximation and the pointwise error for increasing N . As for the con-
tinuous Fourier series approximation we recover a quadratic convergence rate
away from the boundary points at which it is only linear.

2.2.2 The odd expansion

How can this type of interpolation operator be defined for the space B̂N con-
taining an odd number of basis functions? To do so, we define a grid with an

Figure 2.4 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

upxq “ 3

5 ´ 4 cosx
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The DFT in practice D14-S15(b)

28 Trigonometric polynomial approximation

Figure 2.4 (a) Discrete Fourier series approximation of Example 2.7 for
increasing resolution. (b) Pointwise error of approximation for increasing
resolution.

Figure 2.5 (a) Discrete Fourier series approximation of Example 2.8 for increasing
resolution. (b) Pointwise error of approximation for increasing resolution.

Example 2.8 Consider again the function

u(x) = sin
( x

2

)
,

and recall that u(x) ∈ C0
p[0, 2π ]. In Figure 2.5 we show the discrete Fourier

series approximation and the pointwise error for increasing N . As for the con-
tinuous Fourier series approximation we recover a quadratic convergence rate
away from the boundary points at which it is only linear.

2.2.2 The odd expansion

How can this type of interpolation operator be defined for the space B̂N con-
taining an odd number of basis functions? To do so, we define a grid with an

Figure 2.4 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

upxq “ sinpx{2q
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