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High order approximations D13-S02(a)

We are now very familiar with our rather standard approximation to uxx on an equidistant grid:

D0u
n

j
« uxx ` Oph2q

Note that the h
2

truncation error is a direct result of our choice of 3-point stencil.

Using more points in the stencil allows us to attain higher order truncation errors.

1

12h2

“´u
n

j´2 ` 16un

j´1 ´ 30un

j
` 16un

j`1 ´ u
n

j`2

‰ « uxx ` O
h
2
.
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High order approximations D13-S02(b)

We are now very familiar with our rather standard approximation to uxx on an equidistant grid:

D0u
n

j
« uxx ` Oph2q

Note that the h
2

truncation error is a direct result of our choice of 3-point stencil.

Using more points in the stencil allows us to attain higher order truncation errors.

1

12h2

“´u
n

j´2 ` 16un

j´1 ´ 30un

j
` 16un

j`1 ´ u
n

j`2

‰ « uxx ` O
h
2
.

In general, using 2p ` 1 points allows us to achieve Oph2kq LTE.

Why stop here? Why not take p as large as possible?

This requires a stencil spreading over the whole domain, globally coupling all degrees of freedom.

Is it worth it?
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Fourier Series, I D13-S03(a)

Before solving differential equations, let’s answer some basic approximation theory questions first.

The simplest example of an approximation scheme that globally couples all degrees of freedom is a Fourier Series.
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Fourier Series, I D13-S03(b)

Before solving differential equations, let’s answer some basic approximation theory questions first.

The simplest example of an approximation scheme that globally couples all degrees of freedom is a Fourier Series.

Consider a given u : r0, 2⇡s Ñ , which we represent as a sum of complex exponentials,

upxq «
ÿ

kP
puk�kpxq, �kpxq “ 1?

2⇡
e
ikx

.

The most straightforward strategy to identify puk is to choose them to minimize a loss,

puk “ argmin
puk,kP

›››››upxq ´
ÿ

kP
puk�kpxq

›››››

2

2

,

where we have introduced the norm and a corresponding inner product,

xf, gy :“
ª 2⇡

0
fpxqgpxqdx, }f}22 :“ xf, fy ,

where z is the complex conjugate of z.
1

1We are mostly interested in real-valued functions, so the introduction of complex arithmetic is somewhat artificial here. We could write
the basis as real-valued sin kx and cos kx functions with real coefficients. This achieves the same results but uses somewhat more technical
formulas.
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Fourier Series, II D13-S04(a)

We have conveniently chosen the basis �k so that,

x�k,�`y “
"

1, k “ `

0, k ‰ `

Such basis functions are orthonormal.

There is a unique solution for the puk that minimizes the loss, and using basis orthonormality the solution has a fairly

simple expression,

puk “ xu,�ky “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx.
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Fourier Series, II D13-S04(b)

We have conveniently chosen the basis �k so that,

x�k,�`y “
"

1, k “ `

0, k ‰ `

Such basis functions are orthonormal.

There is a unique solution for the puk that minimizes the loss, and using basis orthonormality the solution has a fairly

simple expression,

puk “ xu,�ky “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx.

This gives us a first taste of some functional analysis: Define,

L
2 “ L

2 pr0, 2⇡s; q “  
f : r0, 2⇡s Ñ

ˇ̌
}f}22 † 8(

.

Then Fourier Series representations are complete in L
2
:

u P L
2 ùñ lim

NÑ8

››››››
upxq ´

Nÿ

k“´N

puk�kpxq
››››››
2

“ 0,

and orthonormality of the basis results in Parseval’s identity,

u P L
2 ùñ }u}22 “

ÿ

kP
|puk|2 .
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Fourier approximation D13-S05(a)

upxq L
2

“
ÿ

kP
puk�kpxq, puk “ xu,�ky

This is all well and good, but how does this serve us computationally?

With finite storage, we have to truncate the infinite series,

upxq « uN pxq :“
ÿ

|k|§N

puk�kpxq

How well does uN approximate u?
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Fourier approximation D13-S05(b)

upxq L
2

“
ÿ

kP
puk�kpxq, puk “ xu,�ky

This is all well and good, but how does this serve us computationally?

With finite storage, we have to truncate the infinite series,

upxq « uN pxq :“
ÿ

|k|§N

puk�kpxq

How well does uN approximate u?

There is, of course, the other pesky issue that in practice we cannot actually compute puk exactly, and so must resort

to additional approximations.

But let’s focus on one sin at a time....
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Fourier approximation D13-S05(c)

upxq L
2

“
ÿ

kP
puk�kpxq, puk “ xu,�ky

This is all well and good, but how does this serve us computationally?

With finite storage, we have to truncate the infinite series,

upxq « uN pxq :“
ÿ

|k|§N

puk�kpxq

How well does uN approximate u?

There is, of course, the other pesky issue that in practice we cannot actually compute puk exactly, and so must resort

to additional approximations.

But let’s focus on one sin at a time....

So our question regards how compressible the infinite series is with respect to the truncation N :

}u ´ uN }2
?
À hpNq,

for some function hpNq.
– h decays quickly with N Ñ u is very compressible

– h decays slowly with N Ñ u is not very compressible
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Projections D13-S06(a)

Before investigating Fourier approximation results, it’s worthwhile to introduce additional concepts: Projections.

Given an operator P : L2 Ñ V , where V Ä L
2

is some subspace of L
2
, then P is a projection operator if

P
2 “ P.

The action u fiÑ Pu projects u onto V .

The action u fiÑ pI ´ P qu projects u onto some subspace W such that V ‘ W “ L
2
.
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Projections D13-S06(b)

Before investigating Fourier approximation results, it’s worthwhile to introduce additional concepts: Projections.

Given an operator P : L2 Ñ V , where V Ä L
2

is some subspace of L
2
, then P is a projection operator if

P
2 “ P.

The action u fiÑ Pu projects u onto V .

The action u fiÑ pI ´ P qu projects u onto some subspace W such that V ‘ W “ L
2
.

For any projection operator P and any u P L
2
, we have,

pI ´ P qPu “ 0.
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Projections D13-S06(c)

Before investigating Fourier approximation results, it’s worthwhile to introduce additional concepts: Projections.

Given an operator P : L2 Ñ V , where V Ä L
2

is some subspace of L
2
, then P is a projection operator if

P
2 “ P.

The action u fiÑ Pu projects u onto V .

The action u fiÑ pI ´ P qu projects u onto some subspace W such that V ‘ W “ L
2
.

For any projection operator P and any u P L
2
, we have,

pI ´ P qPu “ 0.

A projection operator P is orthogonal if W K V , equivalently if for every u, v P L
2
:

P “ P
˚
,

@
P

˚
u, v

D
:“ xu, Pvy .
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Truncation and projection D13-S07(a)

We are considering the truncation,

ÿ

kP
puk�kpxq L

2

“ u « uN “
ÿ

|k|§N

puk�kpxq.

This truncation is an orthogonal projector.

Theorem
Define PN as the operator,

PNu “ uN “
ÿ

|k|§N

puk�kpxq, u
L

2

“
ÿ

kP
puk�k.

Then PN is an orthogonal projection operator.
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A basic approximation estimate, I D13-S08(a)

Can we bound }u ´ PNu}2? First note that,

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 .
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A basic approximation estimate, I D13-S08(b)

Can we bound }u ´ PNu}2? First note that,

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 .

Integration by parts is our friend, and note that,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx

“ i

k
?
2⇡

upxqe´ikx
ˇ̌2⇡
0

´ i

k
?
2⇡

ª 2⇡

0
u

1pxqe´ikxdx.

A. Narayan (U. Utah – Math/SCI) Math 6620: Approximation with Fourier Series



A basic approximation estimate, I D13-S08(c)

Can we bound }u ´ PNu}2? First note that,

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 .

Integration by parts is our friend, and note that,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx

“ i

k
?
2⇡

upxqe´ikx
ˇ̌2⇡
0

´ i

k
?
2⇡

ª 2⇡

0
u

1pxqe´ikxdx.

Note that, conveniently, the first term vanishes if up0q “ up2⇡q.
This is, of course, quite reasonable since we are approximating with periodic functions.

Note also that the remaining integral is the Fourier series coefficient for the derivative, u
1pxq:

u
1pxq “

ÿ

|k|P
pu1
k�kpxq, pu1

k “ @
u

1
,�k

D
.
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A basic approximation estimate, I D13-S08(d)

Can we bound }u ´ PNu}2? First note that,

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 .

Integration by parts is our friend, and note that,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx

“ i

k
?
2⇡

upxqe´ikx
ˇ̌2⇡
0

´ i

k
?
2⇡

ª 2⇡

0
u

1pxqe´ikxdx.

Note that, conveniently, the first term vanishes if up0q “ up2⇡q.
This is, of course, quite reasonable since we are approximating with periodic functions.

Note also that the remaining integral is the Fourier series coefficient for the derivative, u
1pxq:

u
1pxq “

ÿ

|k|P
pu1
k�kpxq, pu1

k “ @
u

1
,�k

D
.

Thus, if u is periodic and u
1 P L

2
(so that pu1

k is well-defined), then

puk “ ´ i

k

pu1
k.
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A basic approximation estimate, II D13-S09(a)

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 ,

puk “ ´ i

k

pu1
k.

This very basic estimate for Fourier series coefficients implies:

}u ´ PNu}22 “
ÿ

|k|°N

1

|k|2
ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

§ 1

N2

ÿ

|k|°N

ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

§ 1

N2

ÿ

kP

ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

“ 1

N2

››u1››2
2
,

where the last relation is Parseval’s identity.
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A basic approximation estimate, II D13-S09(b)

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 ,

puk “ ´ i

k

pu1
k.

This very basic estimate for Fourier series coefficients implies:

}u ´ PNu}22 “
ÿ

|k|°N

1

|k|2
ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

§ 1

N2

ÿ

|k|°N

ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

§ 1

N2

ÿ

kP

ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

“ 1

N2

››u1››2
2
,

where the last relation is Parseval’s identity.

We have just proven the following:

Theorem
Suppose u, u

1 P L
2, and that up0q “ up2⇡q. Then,

}u ´ PNu}2 § 1

N
}u1}

L2
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Sobolev spaces D13-S10(a)

To generalize this result, some additional notation will be helpful.

Definition (Sobolev spaces)
Given s P 0 “ t0, 1, . . . , u, the (L

2
periodic) Sobolev space of functions is given by,

H
s

ppr0, 2⇡s; q :“  
f : r0, 2⇡s Ñ

ˇ̌
f

pkq P L
2pr0, 2⇡s; q for all 0 § k § s,

f
pkqp0q “ f

pkqp2⇡q for all 0 § k § s ´ 1
(

The norm on H
s
p is defined as,

}u}2
Hs :“

sÿ

k“0

›››upkq
›››
2

2
.

Some specializations of interest:

– s “ 0 ùñ H
0 “ L

2

– s ° 0 ùñ continuous functions Ä H
s
p
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Sobolev spaces D13-S10(b)

To generalize this result, some additional notation will be helpful.

Definition (Sobolev spaces)
Given s P 0 “ t0, 1, . . . , u, the (L

2
periodic) Sobolev space of functions is given by,

H
s

ppr0, 2⇡s; q :“  
f : r0, 2⇡s Ñ

ˇ̌
f

pkq P L
2pr0, 2⇡s; q for all 0 § k § s,

f
pkqp0q “ f

pkqp2⇡q for all 0 § k § s ´ 1
(

The norm on H
s
p is defined as,

}u}2
Hs :“

sÿ

k“0

›››upkq
›››
2

2
.

Some specializations of interest:

– s “ 0 ùñ H
0 “ L

2

– s ° 0 ùñ continuous functions Ä H
s
p

The parameter s encodes the “amount” of smoothness that functions have, and the following inclusions hold:

H
r

p Ä H
s

p , r ° s • 0.
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General approximation results D13-S11(a)

The language of Sobolev spaces is the standard language in which to technically describe convergence rates of

Fourier Series approximations.

Theorem
If u P H

s, then

}u ´ PNu}
L2 § N

´s}u}Hs

Note that s “ 1 is our previous result.

In terms of degrees of freedom, M , }u ´ PNu}
L2 À M

´s}u}Hs
p
, which is fantastic for large s.
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General approximation results D13-S11(b)

The language of Sobolev spaces is the standard language in which to technically describe convergence rates of

Fourier Series approximations.

Theorem
If u P H

s, then

}u ´ PNu}
L2 § N

´s}u}Hs

Note that s “ 1 is our previous result.

In terms of degrees of freedom, M , }u ´ PNu}
L2 À M

´s}u}Hs
p
, which is fantastic for large s.

Actually, something even stronger is true about Fourier approximation:

Theorem
If u P H

s, then for every 0 § r † s,

}u ´ PNu}Hr
p

§ N
´ps´rq}u}Hs

p
.

This result demonstrates tradeoff between smoothness of the function versus the strength of the norm under which

convergence is sought.
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Infinite regularity D13-S12(a)

The previous Fourier series results are essentially “good enough” to understand the basic point that smoothness of u

translates into efficient approximations.

But to close the loop: what if u is infinitely differentiable?

Theorem
Let u : r0, 2⇡q Ñ be the restriction of a function f : Ñ to the unit circle. I.e., upxq :“ fpeixq.
Assume f is (complex) analytic in an annular neighborhood of the unit circle in . (This implies that u is infinitely
differentiable.)

Then there exist constants K, c ° 0 such that,

}u ´ PNu}
L2 § Ke

´cN
.

Furthermore, for any s P 0, there are constants rK, rc ° 0 such that,

}u ´ PNu}Hs
p

§ rKe
´rcN

.

The constants K, c, rK, rc depend on the radii defining the annular region of analyticity.

Proof steps:

– PNu is a truncated Laurent series of f around the origin in .

– Convergence of the Laurent series in the region r1 § |z| § r2, where r1 † 1 † r2, can be used to estimate the

truncated Laurent series coefficients.
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Infinite regularity D13-S12(b)

The previous Fourier series results are essentially “good enough” to understand the basic point that smoothness of u

translates into efficient approximations.

But to close the loop: what if u is infinitely differentiable?

Theorem
Let u : r0, 2⇡q Ñ be the restriction of a function f : Ñ to the unit circle. I.e., upxq :“ fpeixq.
Assume f is (complex) analytic in an annular neighborhood of the unit circle in . (This implies that u is infinitely
differentiable.)

Then there exist constants K, c ° 0 such that,

}u ´ PNu}
L2 § Ke

´cN
.

Furthermore, for any s P 0, there are constants rK, rc ° 0 such that,

}u ´ PNu}Hs
p

§ rKe
´rcN

.

The constants K, c, rK, rc depend on the radii defining the annular region of analyticity.

Proof steps:

– PNu is a truncated Laurent series of f around the origin in .

– Convergence of the Laurent series in the region r1 § |z| § r2, where r1 † 1 † r2, can be used to estimate the

truncated Laurent series coefficients.
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Infinite regularity D13-S12(c)

The previous Fourier series results are essentially “good enough” to understand the basic point that smoothness of u

translates into efficient approximations.

But to close the loop: what if u is infinitely differentiable?

Theorem
Let u : r0, 2⇡q Ñ be the restriction of a function f : Ñ to the unit circle. I.e., upxq :“ fpeixq.
Assume f is (complex) analytic in an annular neighborhood of the unit circle in . (This implies that u is infinitely
differentiable.)

Then there exist constants K, c ° 0 such that,

}u ´ PNu}
L2 § Ke

´cN
.

Furthermore, for any s P 0, there are constants rK, rc ° 0 such that,

}u ´ PNu}Hs
p

§ rKe
´rcN

.

The constants K, c, rK, rc depend on the radii defining the annular region of analyticity.

Proof steps:

– PNu is a truncated Laurent series of f around the origin in .

– Convergence of the Laurent series in the region r1 § |z| § r2, where r1 † 1 † r2, can be used to estimate the

truncated Laurent series coefficients.
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The overall theme D13-S13(a)

The results we’ve described are generic lessons for nonperiodic global approximation as well:

– Such global methods have (rates of) accuracy that are limited only by functional regularity

§ Finite regularity ùñ polynomial rates of error decay

§ Infinite regularity ùñ superpolynomial (often exponential) rates of error decay

(Note that real analyticity is not sufficient for complex analyticity; lack of complex analyticity generally downgrades

pure exponential convergence to subexponential.)

– Global discretization methods are typically called spectral methods.
– The very succinct punchline:

Smoothness ùñ Compressibility
– All of this only applies to function approximation. For computing solutions to differential equations, this gives

us tools to understand consistency of schemes.

– To really achieve convergence, we must understand stability as well.
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The overall theme D13-S13(b)

The results we’ve described are generic lessons for nonperiodic global approximation as well:

– Such global methods have (rates of) accuracy that are limited only by functional regularity

§ Finite regularity ùñ polynomial rates of error decay

§ Infinite regularity ùñ superpolynomial (often exponential) rates of error decay

(Note that real analyticity is not sufficient for complex analyticity; lack of complex analyticity generally downgrades

pure exponential convergence to subexponential.)

– Global discretization methods are typically called spectral methods.
– The very succinct punchline:

Smoothness ùñ Compressibility
– All of this only applies to function approximation. For computing solutions to differential equations, this gives

us tools to understand consistency of schemes.

– To really achieve convergence, we must understand stability as well.
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The overall theme D13-S13(c)

The results we’ve described are generic lessons for nonperiodic global approximation as well:

– Such global methods have (rates of) accuracy that are limited only by functional regularity

§ Finite regularity ùñ polynomial rates of error decay

§ Infinite regularity ùñ superpolynomial (often exponential) rates of error decay

(Note that real analyticity is not sufficient for complex analyticity; lack of complex analyticity generally downgrades

pure exponential convergence to subexponential.)

– Global discretization methods are typically called spectral methods.
– The very succinct punchline:

Smoothness ùñ Compressibility
– All of this only applies to function approximation. For computing solutions to differential equations, this gives

us tools to understand consistency of schemes.

– To really achieve convergence, we must understand stability as well.
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