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FD for hyperbolic problems D12-S02(a)

We’ll focus here on hyperbolic problems, for which the prototypical example is,

ut ` aux “ 0, upx, 0q “ u0pxq, a P , x P r0, 2⇡q

Again, we will impose periodic boundary conditions to understand the PDE.
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FD for hyperbolic problems D12-S02(b)

We’ll focus here on hyperbolic problems, for which the prototypical example is,

ut ` aux “ 0, upx, 0q “ u0pxq, a P , x P r0, 2⇡q

Again, we will impose periodic boundary conditions to understand the PDE.

The symbol P of the operator ppBxq “ ´aBx is,

F r´auxs “ ´ia!Frus “ Pp!qFrus,

so that the exact solution is

upx, tq “ F´1
”
e´ia!tU0p!q

ı
“ u0px ´ atq,

i.e., this is a wave that moves with velocity a. (There is no dissipation.)
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FD for hyperbolic problems D12-S02(c)

We’ll focus here on hyperbolic problems, for which the prototypical example is,

ut ` aux “ 0, upx, 0q “ u0pxq, a P , x P r0, 2⇡q
Again, we will impose periodic boundary conditions to understand the PDE.

The symbol P of the operator ppBxq “ ´aBx is,

F r´auxs “ ´ia!Frus “ Pp!qFrus,
so that the exact solution is

upx, tq “ F´1
”
e´ia!tU0p!q

ı
“ u0px ´ atq,

i.e., this is a wave that moves with velocity a. (There is no dissipation.)

So why we should we try to numerically solve this problem? (The exact solution is so easy!)
The hard versions of this problem to solve have:

– variable wave speed
– nonperiodic boundary conditions
– potential nonlinearities

These problems don’t frequently have exact solutions, and most of the useful intuition can be attained by
consdering the simple problem.
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Energy for wave problems D12-S03(a)

ut ` aux “ 0, upx, 0q “ u0pxq, a P , x P r0, 2⇡q

How does energy behave for this PDE?
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Energy for wave problems D12-S03(b)

ut ` aux “ 0, upx, 0q “ u0pxq, a P , x P r0, 2⇡q

How does energy behave for this PDE?
– Multiply by u

– Integrate over r0, 2⇡s

d
dt

}up¨, tq}2 “
ª 2⇡

0

auuxdx “ a
2

ª 2⇡

0

B
Bxu

2px, tqdx p˚q“ 0.

where p˚q uses periodicity of u.

Hence, energy is not dissipated by this PDE.
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Characteristic tracing, I D12-S04(a)

One additional consequence of the simplicity of this problem:

Consider a particle moving in space with position Xptq. Note that,

dupXptq, tq
dt

“ pupXptq, tqqt ` pupXptq, tqqx
d
dt

Xptq

A. Narayan (U. Utah – Math/SCI) Math 6620: Finite difference methods, III



Characteristic tracing, I D12-S04(b)

One additional consequence of the simplicity of this problem:

Consider a particle moving in space with position Xptq. Note that,

dupXptq, tq
dt

“ pupXptq, tqqt ` pupXptq, tqqx
d
dt

Xptq

If we choose Xptq to satisfy,

X 1ptq “ a, Xp0q “ x0,

then

dupXptq, tq
dt

“ pupXptq, tqqt ` a pupXptq, tqqx “ 0,

i.e., upXptq, tq “ upx0, tq is constant for all time.
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Characteristic tracing, I D12-S04(c)

One additional consequence of the simplicity of this problem:

Consider a particle moving in space with position Xptq. Note that,

dupXptq, tq
dt

“ pupXptq, tqqt ` pupXptq, tqqx
d
dt

Xptq

If we choose Xptq to satisfy,

X 1ptq “ a, Xp0q “ x0,

then
dupXptq, tq

dt
“ pupXptq, tqqt ` a pupXptq, tqqx “ 0,

i.e., upXptq, tq “ upx0, tq is constant for all time. Such trajectories Xptq that preserve the value of u
along them are called characteristics.

In this particular case, the characteristics are easy to identify:

Xptq “ at ` x0,

which are lines in the pt, xq plane.
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Characteristic tracing, II D12-S05(a)

ut ` aux “ 0, upx, 0q “ u0pxq,
upXptq, tq “ upat ` x0, tq “ upx0, tq “ u0px0q.

This suggests a(n easy) scheme for computing upx, tq for some t ° 0:
– Set Xptq “ x.
– Compute Xp0q “ x ´ at

– Compute upx, tq “ upXptq, tq “ upx ´ at, 0q “ u0px ´ atq
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Characteristic tracing, II D12-S05(b)

ut ` aux “ 0, upx, 0q “ u0pxq,
upXptq, tq “ upat ` x0, tq “ upx0, tq “ u0px0q.

This suggests a(n easy) scheme for computing upx, tq for some t ° 0:
– Set Xptq “ x.
– Compute Xp0q “ x ´ at

– Compute upx, tq “ upXptq, tq “ upx ´ at, 0q “ u0px ´ atq
This scheme is a called the method of characteristics, which is a Lagrangian approach.

This scheme shows another way to reveal something rather unusual about this PDE: the exact solution at
px, tq depends only on the initial data at x0.
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Characteristic tracing, II D12-S05(c)

ut ` aux “ 0, upx, 0q “ u0pxq,
upXptq, tq “ upat ` x0, tq “ upx0, tq “ u0px0q.

This suggests a(n easy) scheme for computing upx, tq for some t ° 0:
– Set Xptq “ x.
– Compute Xp0q “ x ´ at

– Compute upx, tq “ upXptq, tq “ upx ´ at, 0q “ u0px ´ atq
This scheme is a called the method of characteristics, which is a Lagrangian approach.

This scheme shows another way to reveal something rather unusual about this PDE: the exact solution at
px, tq depends only on the initial data at x0.

A formalization of the above idea is through the domain of dependence:

Dpx, tq :“ tx ´ atu Ä

Dpx, tq contains the set of points such that upx, tq depends only on the values upDpx, tq, 0q.
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Characteristic tracing, II D12-S05(d)

ut ` aux “ 0, upx, 0q “ u0pxq,
upXptq, tq “ upat ` x0, tq “ upx0, tq “ u0px0q.

This suggests a(n easy) scheme for computing upx, tq for some t ° 0:
– Set Xptq “ x.
– Compute Xp0q “ x ´ at

– Compute upx, tq “ upXptq, tq “ upx ´ at, 0q “ u0px ´ atq
This scheme is a called the method of characteristics, which is a Lagrangian approach.

This scheme shows another way to reveal something rather unusual about this PDE: the exact solution at
px, tq depends only on the initial data at x0.

A formalization of the above idea is through the domain of dependence:

Dpx, tq :“ tx ´ atu Ä
Dpx, tq contains the set of points such that upx, tq depends only on the values upDpx, tq, 0q.
As an alternative example, Dpx, tq “ for the heat equation for every px, tq with t ° 0.
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Let’s get to some schemes.... D12-S06(a)

ut ` aux “ 0, upx, 0q “ u0pxq, x P r0, 2⇡q

with periodic boundary conditions. Let’s use our standard setup:
– Equidistant discretization for x and t

– xj “ 2⇡j
M , j P rM s. Periodic BC’s: we identify xM Ø x0.

h “ �x “ xj`1 ´ xj

– tn “ nk, k ° 0 for n “ 0, 1, . . .
k “ �t “ tk`1 ´ tk

– un
j « upxj , tnq, un “ pun

0 , . . . , u
n
M´1qT
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Let’s get to some schemes.... D12-S06(b)

ut ` aux “ 0, upx, 0q “ u0pxq, x P r0, 2⇡q

with periodic boundary conditions. Let’s use our standard setup:
– Equidistant discretization for x and t

– xj “ 2⇡j
M , j P rM s. Periodic BC’s: we identify xM Ø x0.

h “ �x “ xj`1 ´ xj

– tn “ nk, k ° 0 for n “ 0, 1, . . .
k “ �t “ tk`1 ´ tk

– un
j « upxj , tnq, un “ pun

0 , . . . , u
n
M´1qT

With a little more experience than before, let’s first consider a semi-discrete scheme:

uxpxj , tnq ›Ñ D0u
n
j “ 1

2h

“
un
j`1 ´ un

j´1

‰
.
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Semi-discrete form D12-S07(a)

This results in the linear ODE:

d
dt

uptq “ Au, up0q “ u0,

where

A “ ´ a
2h

¨

˚̊
˚̊
˚̋

0 1 ´1
´1 0 1

. . .
. . .

. . .

1 ´1 0

˛

‹‹‹‹‹‚

Let’s consider Forward Euler for the time discretization:

un`1 “ un ` kAun.

We have several notions of stability to consider. Let’s look at most of them. (For this PDE, we’ll learn
fairly consistent lessons.)
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Absolute stability D12-S08(a)

In order to achieve absolute stability, we require that the spectrum of A lies in the region of stability for
Forward Euler.

A direct computation reveals that:

�jpAq “ ´ ia
h

sinp2⇡j{Mq, j P rM s

and thus in particular,

<�j “ 0, ´ |a|
h

§ =�j § |a|
h
.

Note that this operator is not stiff! I.e., max |�j | „ M .
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Absolute stability D12-S08(b)

In order to achieve absolute stability, we require that the spectrum of A lies in the region of stability for
Forward Euler.

A direct computation reveals that:

�jpAq “ ´ ia
h

sinp2⇡j{Mq, j P rM s

and thus in particular,

<�j “ 0, ´ |a|
h

§ =�j § |a|
h
.

Note that this operator is not stiff! I.e., max |�j | „ M .

The stability region for Forward Euler corresponds z “ �k, for � any eigenvalue of A, satisfying,

|1 ` z| § 1.

For which values of k ° 0 is this scheme stable?
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Absolute stability D12-S08(c)

In order to achieve absolute stability, we require that the spectrum of A lies in the region of stability for
Forward Euler.

A direct computation reveals that:

�jpAq “ ´ ia
h

sinp2⇡j{Mq, j P rM s
and thus in particular,

<�j “ 0, ´ |a|
h

§ =�j § |a|
h
.

Note that this operator is not stiff! I.e., max |�j | „ M .

The stability region for Forward Euler corresponds z “ �k, for � any eigenvalue of A, satisfying,

|1 ` z| § 1.

For which values of k ° 0 is this scheme stable?

This scheme is not stable for any choice of k ° 0. But note that for some explicit methods whose region of
stability contains the imaginary axis, we can attain absolute stability with a condition like,

|a|k À h.
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Von Neumann stability D12-S09(a)

Von Neumann stability will tell us something similar.

In the domain interior, the scheme reads,

un`1
j “ un

j ´ ak
2h

`
un
j`1 ´ un

j´1

˘
.

We make the ansatz un
j “ eixj! “ eijh!, and un`1

j “ gp!qeijh!.
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Von Neumann stability D12-S09(b)

Von Neumann stability will tell us something similar.

In the domain interior, the scheme reads,

un`1
j “ un

j ´ ak
2h

`
un
j`1 ´ un

j´1

˘
.

We make the ansatz un
j “ eixj! “ eijh!, and un`1

j “ gp!qeijh!. We obtain,

gp!q “ 1 ´ i
ak
h

sinp!hq,

which for generic ! satisfies,

|gp!q| ° 1,

hence this scheme is not stable for any choice of k ° 0.
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Lax-Richtmyer stability D12-S10(a)

Lax-Richtmyer stability is similar to absolute stability:

un`1 “ pI ` kAqun “ Bun.

A sufficient condition is to control the norm of B, but

}B}22 p˚q“ max
j

|�jpBq|2 “ 1 ` k2 max
j

|�jpAq|2 „ 1 `
ˆ
ka
h

˙2

° 1

where p˚q uses the fact that B is a normal matrix.

Thus, in this case it’s not clear that we’ll get stability.
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Lax-Richtmyer stability D12-S10(b)

Lax-Richtmyer stability is similar to absolute stability:

un`1 “ pI ` kAqun “ Bun.

A sufficient condition is to control the norm of B, but

}B}22 p˚q“ max
j

|�jpBq|2 “ 1 ` k2 max
j

|�jpAq|2 „ 1 `
ˆ
ka
h

˙2

° 1

where p˚q uses the fact that B is a normal matrix.

Thus, in this case it’s not clear that we’ll get stability.

However, Lax-Richtmyer stability is a little more forgiving than the condition above. In particular, let’s
choose

k “
ˆ
h
a

˙2

ùñ }B}22 § 1 `
ˆ
ka
h

˙2

“ 1 ` k

and thus,

}Bn}2 § }B}n2 “ p1 ` kqn{2 § eT {2.

Thus, we do attain stability, but at an unnecessarily steep timestep restriction.
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Alternative schemes D12-S11(a)

All the above discussions are really meant to convince you that there are better schemes.

One alternative is to change the time discretization: We’ve already mentioned that choosing a time
integration scheme whose region of stability contains the imaginary axis would work.
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Alternative schemes D12-S11(b)

All the above discussions are really meant to convince you that there are better schemes.

One alternative is to change the time discretization: We’ve already mentioned that choosing a time
integration scheme whose region of stability contains the imaginary axis would work.

Apart from those we’ve already discussed, one popular method is the Leapfrog method:

D0u1ptq “ Au ›Ñ un`1 “ un´1 ` 2kAun.
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Alternative schemes D12-S11(c)

All the above discussions are really meant to convince you that there are better schemes.

One alternative is to change the time discretization: We’ve already mentioned that choosing a time
integration scheme whose region of stability contains the imaginary axis would work.

Apart from those we’ve already discussed, one popular method is the Leapfrog method:

D0u1ptq “ Au ›Ñ un`1 “ un´1 ` 2kAun.

For absolute stability, the region of stability of this method is the imaginary axis, <z “ 0, ´1 § =z § 1.

Since the spectrum of A is purely imaginary, with maximum value ia{h, then stability is achieved with

k § h{a,

which is reasonable.

The main issue with the leapfrog method is that it is only marginally stable: there is no dissipation. In
practice this means that slight deviations (say of the equation or of the data) can cause instabilities.
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Adding dissipation, I D12-S12(a)

Another strategy is a somewhat empirical one: we have determined that the forward Euler discretization for

u1ptq “ Au,

is not stable, i.e., the energy and in particular “modes” of the solution (e.g., the projection of uptq onto the
eigenvectors of A) grow in time.
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Adding dissipation, I D12-S12(b)

Another strategy is a somewhat empirical one: we have determined that the forward Euler discretization for

u1ptq “ Au,

is not stable, i.e., the energy and in particular “modes” of the solution (e.g., the projection of uptq onto the
eigenvectors of A) grow in time.

One high-level idea: introduce energy decay through dissipation. Essentially, we could instead try to solve,

ut ` aux “ ✏uxx,

for some “small” ✏ ° 0.
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Adding dissipation, I D12-S12(c)

Another strategy is a somewhat empirical one: we have determined that the forward Euler discretization for

u1ptq “ Au,

is not stable, i.e., the energy and in particular “modes” of the solution (e.g., the projection of uptq onto the
eigenvectors of A) grow in time.

One high-level idea: introduce energy decay through dissipation. Essentially, we could instead try to solve,

ut ` aux “ ✏uxx,

for some “small” ✏ ° 0.

We are indeed making a “mistake” with this strategy, as the solution to the PDE will not match that of the
original purely hyperbolic problem.

However, this high-level idea is actually quite effective in general practice and also yields some insight into
theoretical considerations.
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Adding dissipation, II D12-S13(a)

ut ` aux “ ✏uxx,

We’ll use the same spatial discretization for aux (i.e., aD0u
n
j ), and we’ll use our standard discretization for

✏uxx, which we know from parabolic problems is effective,

✏uxx ›Ñ ✏D`D´un
j ,

resulting in the semi-discrete form,

u1ptq “
´
A ` rA✏

¯
uptq,

where A is as before, and rA✏ corresponds to the ✏uxx term.
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Adding dissipation, II D12-S13(b)

ut ` aux “ ✏uxx,

We’ll use the same spatial discretization for aux (i.e., aD0u
n
j ), and we’ll use our standard discretization for

✏uxx, which we know from parabolic problems is effective,

✏uxx ›Ñ ✏D`D´un
j ,

resulting in the semi-discrete form,

u1ptq “
´
A ` rA✏

¯
uptq,

where A is as before, and rA✏ corresponds to the ✏uxx term.

The more important question is how to choose ✏. Some initial considerations are:
– We’ll insist on Forward Euler, so we want the eigenvalues of A ` rA✏ to lie within the corresponding

region of stability (|1 ` z| § 1)
– Choosing ✏ too small will not introduce enough dissipation.
– Choosing ✏ too large will introduce so much dissipation that the operator A ` rA✏ will become stiff

(like uxx) and will result in a k À h2 stability restriction
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Empirical investigations D12-S14(a)
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Figure 10.1. Eigenvalues of the matrix A! in (10.15), for various values of !, in
the case h D 1=50 and k D 0:8h, a D 1, so ak=h D 0:8. (a) shows the case ! D 0
which corresponds to the forward Euler method (10.5). (d) shows the case ! D a2k=2, the
Lax–Wendroff method (10.18). (e) shows the case ! D h2=2k, the Lax–Friedrichs method
(10.6). The method is stable for ! between a2k=2 and h2=2k, as in (d) through (e).
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Figure: Eigenvalues of A ` rA✏ for a “ 1, k “ 0.8h (open circles), and various ✏ choices (increasing from left to
right), versus the Forward Euler region of stability (black line boundary). From LeVeque 2007, Figure 10.1.

The key things to notice:
– The small ✏ and large ✏ regimes behaves as we would expect.
– There are “critical” values of ✏ that are just large/small enough to make the scheme stable.
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The Lax-Friedrichs scheme D12-S15(a)

The spectrum of A ` rA✏ is actually explicitly computable, allowing one to show that the eigenvalues
actually lie on the boundary of an ellipse whose position + aspect ratio depend on ✏.
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The Lax-Friedrichs scheme D12-S15(b)

The spectrum of A ` rA✏ is actually explicitly computable, allowing one to show that the eigenvalues
actually lie on the boundary of an ellipse whose position + aspect ratio depend on ✏.

In particular, one can take ✏ as large as possible so that the spectrum lies inside the Forward Euler region of
stability. This corresponds to the choice,

✏ “ h2

2k
,

and results in the Lax-Friedrichs scheme. This scheme as we’ve derived it reads,

D`un
j “ ´aD0u

n
j ` h2

2kljhn
✏

D`D´un
j .
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The Lax-Friedrichs scheme D12-S15(c)

The spectrum of A ` rA✏ is actually explicitly computable, allowing one to show that the eigenvalues
actually lie on the boundary of an ellipse whose position + aspect ratio depend on ✏.

In particular, one can take ✏ as large as possible so that the spectrum lies inside the Forward Euler region of
stability. This corresponds to the choice,

✏ “ h2

2k
,

and results in the Lax-Friedrichs scheme. This scheme as we’ve derived it reads,

D`un
j “ ´aD0u

n
j ` h2

2kljhn
✏

D`D´un
j .

However, it’s more common to combine some terms and write this scheme as,

un`1
j “ 1

2

`
un
j´1 ` un

j`1

˘ ´ kaD0u
n
j

Note that this scheme differs from the standard Forward Euler approach only by the term highlighted in
blue, which in effect just replaced un

j with the average at neighboring grid points.
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The Lax-Friedrichs scheme D12-S15(d)

The spectrum of A ` rA✏ is actually explicitly computable, allowing one to show that the eigenvalues
actually lie on the boundary of an ellipse whose position + aspect ratio depend on ✏.

In particular, one can take ✏ as large as possible so that the spectrum lies inside the Forward Euler region of
stability. This corresponds to the choice,

✏ “ h2

2k
,

and results in the Lax-Friedrichs scheme. This scheme as we’ve derived it reads,

D`un
j “ ´aD0u

n
j ` h2

2kljhn
✏

D`D´un
j .

However, it’s more common to combine some terms and write this scheme as,

un`1
j “ 1

2

`
un
j´1 ` un

j`1

˘ ´ kaD0u
n
j

Note that this scheme differs from the standard Forward Euler approach only by the term highlighted in
blue, which in effect just replaced un

j with the average at neighboring grid points. A computation shows
that the Lax-Friedrichs scheme is stable if |ak{h| § 1.
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The Lax-Wendroff scheme D12-S16(a)

Whereas the Lax-Friedrichs uses as much dissipation as possible to ensure stability, an alternative approach
is use to just enough dissipation, corresponding to ✏ “ a2k{2:

D`un
j “ ´aD0u

n
j ` a2k

2ljhn
✏

D`D´un
j .
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The Lax-Wendroff scheme D12-S16(b)

Whereas the Lax-Friedrichs uses as much dissipation as possible to ensure stability, an alternative approach
is use to just enough dissipation, corresponding to ✏ “ a2k{2:

D`un
j “ ´aD0u

n
j ` a2k

2ljhn
✏

D`D´un
j .

This is the Lax-Wendroff scheme.

Since it uses “just enough” dissipation, it is not too surprising that this is generally more accurate (say in
the LTE sense) than Lax-Friedrichs.
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The Lax-Wendroff scheme D12-S16(c)

Whereas the Lax-Friedrichs uses as much dissipation as possible to ensure stability, an alternative approach
is use to just enough dissipation, corresponding to ✏ “ a2k{2:

D`un
j “ ´aD0u

n
j ` a2k

2ljhn
✏

D`D´un
j .

This is the Lax-Wendroff scheme.

Since it uses “just enough” dissipation, it is not too surprising that this is generally more accurate (say in
the LTE sense) than Lax-Friedrichs.

For stability of Lax-Wendroff, we again require |ak{h| § 1.
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Even more alternatives D12-S17(a)

Another popular class of methods are upwind schemes.

We started by using D0 to approximate B
Bx , but why not use D` or D´?
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Even more alternatives D12-S17(b)

Another popular class of methods are upwind schemes.

We started by using D0 to approximate B
Bx , but why not use D` or D´?

In this hyperbolic setting, these two options are not interchangable: the sign of the wavespeed a dictates a
“natural” direction of flow:

upx, tq “ u0px ´ atq.
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Even more alternatives D12-S17(c)

Another popular class of methods are upwind schemes.

We started by using D0 to approximate B
Bx , but why not use D` or D´?

In this hyperbolic setting, these two options are not interchangable: the sign of the wavespeed a dictates a
“natural” direction of flow:

upx, tq “ u0px ´ atq.

A qualitative argument for using one over the other is as follows:
– If a ° 0:

§ The solution travels to the right.
§ Hence, to compute a derivative at spatial index j, using data from j, j ´ 1, j ´ 2, . . . seems consistent with

the solution.
§ Use D´.

– If a † 0:
§ The solution travels to the left.
§ Hence, to compute a derivative at spatial index j, using data from j, j ` 1, j ` 2, . . . seems consistent with

the solution.
§ Use D`.
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Even more alternatives D12-S17(d)

Another popular class of methods are upwind schemes.

We started by using D0 to approximate B
Bx , but why not use D` or D´?

In this hyperbolic setting, these two options are not interchangable: the sign of the wavespeed a dictates a
“natural” direction of flow:

upx, tq “ u0px ´ atq.
A qualitative argument for using one over the other is as follows:
– If a ° 0:

§ The solution travels to the right.
§ Hence, to compute a derivative at spatial index j, using data from j, j ´ 1, j ´ 2, . . . seems consistent with

the solution.
§ Use D´.

– If a † 0:
§ The solution travels to the left.
§ Hence, to compute a derivative at spatial index j, using data from j, j ` 1, j ` 2, . . . seems consistent with

the solution.
§ Use D`.

This can be made formal with some stability analysis: the upwind scheme,

D`un
j “ ´aD˘un

j ,

is stable iff |ak{h| § 1 and ˘signpaq § 0.
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Stability D12-S18(a)

We have seen that the condition,
ˇ̌
ˇ̌ak
h

ˇ̌
ˇ̌ § 1,

is a necessary stability condition for discretizing ut ` aux “ 0 in the schemes we’ve considered.

Apart from the algebra of stability computations, is there some broader motivation for this condition?
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Stability D12-S18(b)

We have seen that the condition,
ˇ̌
ˇ̌ak
h

ˇ̌
ˇ̌ § 1,

is a necessary stability condition for discretizing ut ` aux “ 0 in the schemes we’ve considered.

Apart from the algebra of stability computations, is there some broader motivation for this condition?

In the px, tq plane, k{h is the slope modulus of a line connecting un
j˘1 to un`1

j .

The characteristics of this problem have the form Xptq “ at ` x0, i.e., in the px, tq plane these lines have
slope modulus 1{|a|.
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Stability D12-S18(c)

We have seen that the condition,
ˇ̌
ˇ̌ak
h

ˇ̌
ˇ̌ § 1,

is a necessary stability condition for discretizing ut ` aux “ 0 in the schemes we’ve considered.

Apart from the algebra of stability computations, is there some broader motivation for this condition?

In the px, tq plane, k{h is the slope modulus of a line connecting un
j˘1 to un`1

j .

The characteristics of this problem have the form Xptq “ at ` x0, i.e., in the px, tq plane these lines have
slope modulus 1{|a|.

Thus, the condition |ak{h| § 1, rewritten, says,

k
h

§ 1
|a| .

Under this condition, the characteristics connecting pxj , tn`1q to time level tn lie between the grid points
xj´1 and xj`1.
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Domains of dependence D12-S19(a)

k
h

§ 1
|a| .

Recall that Dpx, tq is the domain of dependence for the exact solution.

If we simply consider domains of dependence from time tn`1 back to time tn, then, the above equation can
be interpreted as,

The interval rxj´1, xj`1s contains Dpxj , tn`1q for time tn

A. Narayan (U. Utah – Math/SCI) Math 6620: Finite difference methods, III



Domains of dependence D12-S19(b)

k
h

§ 1
|a| .

Recall that Dpx, tq is the domain of dependence for the exact solution.

If we simply consider domains of dependence from time tn`1 back to time tn, then, the above equation can
be interpreted as,

The interval rxj´1, xj`1s contains Dpxj , tn`1q for time tn

For many of the (single-step) schemes we’ve considered, rxj´1, xj`1s is the numerical domain of
dependence of the scheme, i.e.,

rDpxj , tn`1q “ I,

where I is the smallest closed interval containing the time tn stencil for the scheme.
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Domains of dependence D12-S19(c)

k
h

§ 1
|a| .

Recall that Dpx, tq is the domain of dependence for the exact solution.

If we simply consider domains of dependence from time tn`1 back to time tn, then, the above equation can
be interpreted as,

The interval rxj´1, xj`1s contains Dpxj , tn`1q for time tn

For many of the (single-step) schemes we’ve considered, rxj´1, xj`1s is the numerical domain of
dependence of the scheme, i.e.,

rDpxj , tn`1q “ I,

where I is the smallest closed interval containing the time tn stencil for the scheme.

Then k{h § 1{|a|, reinterpreted again, states that,
rDpxj , tn`1q Ö Dpxj , tn`1q

The numerical domain of dependence contains the analytical domain of dependence

This condition requires the numerical scheme to use data that can encode the exact solution.
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The CFL condition D12-S20(a)

The general condition that

The numerical domain of dependence contains the analytical domain of dependence

is called the Courant-Friedrichs-Lewy (CFL) condition.
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The CFL condition D12-S20(b)

The general condition that

The numerical domain of dependence contains the analytical domain of dependence

is called the Courant-Friedrichs-Lewy (CFL) condition.

This condition is actually a rigorous requirement: A necessary condition for convergence of a numerical
scheme is that as k, h Ó 0, the numerical domain of dependence contains the (analytical) domain of
dependence.
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The CFL condition D12-S20(c)

The general condition that

The numerical domain of dependence contains the analytical domain of dependence

is called the Courant-Friedrichs-Lewy (CFL) condition.

This condition is actually a rigorous requirement: A necessary condition for convergence of a numerical
scheme is that as k, h Ó 0, the numerical domain of dependence contains the (analytical) domain of
dependence.

For wave-like problems with wavespeed a, this condition is essentially always of the form,

k § |a|h

The CFL condition provides an easy (+ transparent) rule-of-thumb for time-step restrictions in hyperbolic
problems.
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