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FD for parabolic problems D11-S02(a)

We’ve considered the problem and FD discretization,

ut “ uxx, upx, 0q “ u0pxq
D`un

j “ D´D`un
j ,

with periodic boundary conditions, and
– Equidistant discretization for x and t

– xj “ 2⇡j
M , j P rMs. Periodic BC’s: we identify xM Ø x0.

h “ �x “ xj`1 ´ xj

– tn “ nk, k ° 0 for n “ 0, 1, . . .
k “ �t “ tk`1 ´ tk

– un
j « upxj , tnq, un “ pun

0 , . . . , u
n
M´1qT

Up next: Stability, accuracy, convergence, etc.
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Method of lines D11-S03(a)

D`un
j “ D´D`un

j ,

The scheme above is fully discrete.

A more transparent understanding of algorithmic behavior can be gained from investigating the semi-discrete scheme:

ut “ uxx
Discretize space›››››››››››Ñ d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

With periodic boundary conditions, then A is the matrix,

h2A “

¨

˚̊
˚̊
˚̋

´2 1 1
1 ´2 1

. . .
. . .

. . .

1 1 ´2

˛

‹‹‹‹‹‚
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Method of lines, II D11-S04(a)

ut “ uxx
Discretize space›››››››››››Ñ d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

This reduction of a partial differential equation, to a system of ordinary ones through discretization, is called the
method of lines.
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9.2. Method of lines discretizations 185
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Figure 9.2. Method of lines interpretation. Ui .t/ is the solution along the line
forward in time at the grid point xi .

where the tridiagonal matrix A is exactly as in (2.9) and g.t/ includes the terms needed for
the boundary conditions, U0.t/ ! g0.t/ and UmC1.t/ ! g1.t/,

A D 1

h2

2

66666664

"2 1
1 "2 1

1 "2 1
: : :

: : :
: : :

1 "2 1
1 "2

3

77777775

; g.t/ D 1

h2

2

66666664

g0.t/
0
0
:::
0

g1.t/

3

77777775

: (9.12)

This MOL approach is sometimes used in practice by first discretizing in space and
then applying a software package for systems of ODEs. There are also packages that are
specially designed to apply MOL. This approach has the advantage of being relatively easy
to apply to a fairly general set of time-dependent PDEs, but the resulting method is often
not as efficient as specially designed methods for the PDE. See Section 11.2 for more
discussion of this.

As a tool in understanding stability theory, however, the MOL discretization is ex-
tremely valuable, and this is the main use we will make of it. We know how to analyze
the stability of ODE methods applied to a linear system of the form (9.11) based on the
eigenvalues of the matrix A, which now depend on the spatial discretization.

If we apply an ODE method to discretize the system (9.11), we will obtain a fully
discrete method which produces approximations U n

i # Ui.tn/ at discrete points in time
which are exactly the points .xi ; tn/ of the grid that we introduced at the beginning of this
chapter.

For example, applying Euler’s method U nC1 D U n C kf .U n/ to this linear system
results in the fully discrete method (9.5). Applying instead the trapezoidal method (5.22)
results in the Crank–Nicolson method (9.7). Applying a higher order linear multistep or
Runge–Kutta method would give a different method, although with the spatial discretiza-
tion (9.10) the overall method would be only second order accurate in space. Replacing

Figure: Method of lines visualization. LeVeque 2007, Figure 9.2
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Method of lines, III D11-S05(a)

ut “ uxx
Discretize space›››››››››››Ñ d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

The semi-discrete form is useful in decoupling space and time.

In particular, it’s something we know how to understand from a time-integration point of view:
– Stability (A-stabiltiy, 0-stability)
– Accuracy (time discretization)
– Convergence (conditioned on a fixed spatial discretization)

Convergence to the solution of the original PDE solution does require some interaction of space and time.

In particular: obtaining a very numerically accurate solution to uptq in isolation does not reveal accuracy relative to
the exact PDE solution. (The latter is what we really care about.)
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Method of lines, III D11-S05(b)

ut “ uxx
Discretize space›››››››››››Ñ d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

The semi-discrete form is useful in decoupling space and time.

In particular, it’s something we know how to understand from a time-integration point of view:
– Stability (A-stabiltiy, 0-stability)
– Accuracy (time discretization)
– Convergence (conditioned on a fixed spatial discretization)

Convergence to the solution of the original PDE solution does require some interaction of space and time.

In particular: obtaining a very numerically accurate solution to uptq in isolation does not reveal accuracy relative to
the exact PDE solution. (The latter is what we really care about.)
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Stability D11-S06(a)

d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

We understand how to generate reasonable schemes for this: any 0-stable method could suffice.

To fix some details, one typically initially considers the simplest scheme to understand the system: Forward Euler.

un`1 “ un ` kAun.

This is a linear ODE, and so one simple concept to explore is absolute stability.

Is it reasonable to expect behavior of the discrete solution corresponding to absolute stability?

To determine stability, the eigenvalues/vectors of A are explicitly computable:

�jpAq “ ´ 4

h2
sin2

˜
⇡rj
2M

¸
, rj :“

"
j ´ 1, j odd
j, j even j P rMs

Note that the eigenvalues all have negative real parts ... as we hope for.
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Stability D11-S06(b)

d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

We understand how to generate reasonable schemes for this: any 0-stable method could suffice.

To fix some details, one typically initially considers the simplest scheme to understand the system: Forward Euler.

un`1 “ un ` kAun.

This is a linear ODE, and so one simple concept to explore is absolute stability.

Is it reasonable to expect behavior of the discrete solution corresponding to absolute stability?

To determine stability, the eigenvalues/vectors of A are explicitly computable:

�jpAq “ ´ 4

h2
sin2

˜
⇡rj
2M

¸
, rj :“

"
j ´ 1, j odd
j, j even j P rMs

Note that the eigenvalues all have negative real parts ... as we hope for.
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Stability D11-S06(c)

d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

We understand how to generate reasonable schemes for this: any 0-stable method could suffice.

To fix some details, one typically initially considers the simplest scheme to understand the system: Forward Euler.

un`1 “ un ` kAun.

This is a linear ODE, and so one simple concept to explore is absolute stability.

Is it reasonable to expect behavior of the discrete solution corresponding to absolute stability?

To determine stability, the eigenvalues/vectors of A are explicitly computable:

�jpAq “ ´ 4

h2
sin2

˜
⇡rj
2M

¸
, rj :“

"
j ´ 1, j odd
j, j even j P rMs

Note that the eigenvalues all have negative real parts ... as we hope for.
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Stiffness D11-S07(a)

d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

�jpAq „ ´ 4

h2
sin2

˜
⇡rj
2M

¸
, rj :“

"
j ´ 1, j odd
j, j even j P rMs

All these eigenvalues lie in the left half-plane, on the real axis. In particular,

�minpAq “ ´ 4

h2
„ 4M2 �maxpAq „ ´1
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Stiffness D11-S07(b)

d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

�jpAq „ ´ 4

h2
sin2

˜
⇡rj
2M

¸
, rj :“

"
j ´ 1, j odd
j, j even j P rMs

All these eigenvalues lie in the left half-plane, on the real axis. In particular,

�minpAq “ ´ 4

h2
„ 4M2 �maxpAq „ ´1

Therefore, there are some parts of the solution that vary slowly (small |�|) and other parts of the solution that vary
quickly (large |�|).

This is a classic sign of stiffness of an ODE – since even moderate M causes large values of �min{�max, this is a stiff
system for those values of M .

The punch line: Although we have attempted to separate space and time, our choice of spatial discretization will
impact our time discretization.
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Stability D11-S08(a)

d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

What does A-stability tell us about the time discretization? For Forward Euler, recall that the region of stability is
defined by,

|z ` 1| § 1, z “ �k,

with � being the eigevalues of A.
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Stability D11-S08(b)

d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

What does A-stability tell us about the time discretization? For Forward Euler, recall that the region of stability is
defined by,

|z ` 1| § 1, z “ �k,

with � being the eigevalues of A.

Since z “ �k is real-valued (and negative in this case), we really have the condition,

z • ´2 ùñ k|�minpAq| § 2 ùñ k § h2

2

Note that this is a rather disappointing stability requirement. (Consider, say, h “ 0.01)
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Stability D11-S08(c)

d

dt
uptq “ Auptq, u “ pu1ptq, . . . , uM ptqqT

What does A-stability tell us about the time discretization? For Forward Euler, recall that the region of stability is
defined by,

|z ` 1| § 1, z “ �k,

with � being the eigevalues of A.

Since z “ �k is real-valued (and negative in this case), we really have the condition,

z • ´2 ùñ k|�minpAq| § 2 ùñ k § h2

2

Note that this is a rather disappointing stability requirement. (Consider, say, h “ 0.01)

For this PDE, violating this notion of stability is bad: this PDE dissipates energy. Violating stability causes energy to
grow.
Note that changing the type of explicit time-stepping scheme (RK, multi-step, etc) does not really change this
stability condition, up to some Op1q constants.
The only real remedy is an A-stable (implicit) scheme.
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Local truncation error D11-S09(a)

ut “ uxx, upx, 0q “ u0pxq
D`un

j “ D´D`un
j ,

For computing the local truncation error, considering the semi-discrete scheme does not provide much benefit.

The LTE is the scheme residual when the exact (smooth) solution is inserted:

LTEn “ D`upxj , tnq ´ D´D`upxj , tnq „ Oph2 ` kq.

As before, we say a scheme is consistent if limk,hÓ0 LTEn “ 0.

A. Narayan (U. Utah – Math/SCI) Math 6620: Finite difference methods, II



Local truncation error D11-S09(b)

ut “ uxx, upx, 0q “ u0pxq
D`un

j “ D´D`un
j ,

For computing the local truncation error, considering the semi-discrete scheme does not provide much benefit.

The LTE is the scheme residual when the exact (smooth) solution is inserted:

LTEn “ D`upxj , tnq ´ D´D`upxj , tnq „ Oph2 ` kq.

As before, we say a scheme is consistent if limk,hÓ0 LTEn “ 0.

Naturally, the temporal order of convergence kp would change depending on the LTE of the time-stepping scheme.

Without directly considering cost of space vs time discretization, one would logically want to balance the LTE by
choosing k „ h2, which is similar to the stability condition.

However, we’ve already seen that this is not really an attractive strategy for choosing k, motivating that this scheme
is not really a very good one.
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Convergence, I D11-S10(a)

As usual, the holy grail is convergence. The idea for how to proceed is similar to what we’ve seen before:

The numerical solution satisfies the scheme exactly:

un`1 “ Bun ` fn,

where
– B is a matrix such kA for the Forward Euler method
– fn is any inhomogeneity in the equation (e.g., the term f in ut “ uxx ` fpx, tq)
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Convergence, I D11-S10(b)

As usual, the holy grail is convergence. The idea for how to proceed is similar to what we’ve seen before:

The numerical solution satisfies the scheme exactly:

un`1 “ Bun ` fn,

where
– B is a matrix such kA for the Forward Euler method
– fn is any inhomogeneity in the equation (e.g., the term f in ut “ uxx ` fpx, tq)

The exact solution upx, tq at the grids points Uptq satisfies the scheme with an LTE correction ⌧n:

Uptn`1q “ BUptnq ` fn ` k⌧n,
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Convergence, I D11-S10(c)

As usual, the holy grail is convergence. The idea for how to proceed is similar to what we’ve seen before:

The numerical solution satisfies the scheme exactly:

un`1 “ Bun ` fn,

where
– B is a matrix such kA for the Forward Euler method
– fn is any inhomogeneity in the equation (e.g., the term f in ut “ uxx ` fpx, tq)

The exact solution upx, tq at the grids points Uptq satisfies the scheme with an LTE correction ⌧n:

Uptn`1q “ BUptnq ` fn ` k⌧n,

Subtracting these two, the error en :“ Uptnq ´ un satisfies,

en`1 “ Ben ` k⌧n,
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Convergence, II D11-S11(a)

un`1 “ Bun ` fn,

Uptn`1q “ BUptnq ` fn ` k⌧n,

en`1 “ Ben ` k⌧n,

Iterating the error equation, we conclude,

en “ Bne0 ` k
nÿ

j“1

Bn´j⌧ j´1,

where ⌧ bounds ⌧n for all n.

NB: the superscripts n and n ´ j on B are exponents.
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Convergence, III D11-S12(a)

Therefore,

}en} “ }Bn}}e0} ` k
nÿ

j“1

}Bn´j}}⌧ j´1}

A. Narayan (U. Utah – Math/SCI) Math 6620: Finite difference methods, II



Convergence, III D11-S12(b)

Therefore,

}en} “ }Bn}}e0} ` k
nÿ

j“1

}Bn´j}}⌧ j´1}

This reveals that we need to control Bn, motivating a new definition.

Definition
A numerical scheme of the form un`1 “ Bun ` fn for computing a solution up to terminal time T is
Lax-Richtmyer stable if

}Bn} § CpT q,

for all k sufficiently small and all time indices n satisfying nk § T .
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Convergence, III D11-S12(c)

Therefore,

}en} “ }Bn}}e0} ` k
nÿ

j“1

}Bn´j}}⌧ j´1}

This reveals that we need to control Bn, motivating a new definition.

Definition
A numerical scheme of the form un`1 “ Bun ` fn for computing a solution up to terminal time T is
Lax-Richtmyer stable if

}Bn} § CpT q,

for all k sufficiently small and all time indices n satisfying nk § T .

In practice, showing }B} § 1 ` Ck for some constant C independent of k is enough.
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Lax-Richtmyer, redux D11-S13(a)

Convergence of the scheme, under consistency and (Lax-Richtmyer) stability follows:

}en} “ }Bn}}e0} ` k
nÿ

j“1

}Bn´j}}⌧ j´1}

stability
§ CpT q

„
}e0} ` kn max

jPrns
}⌧ j´1}

⇢
,

§ CpT q
„

}e0} ` T max
jPrns

}⌧ j´1}
⇢
,

k,hÓ0+ consistency›Ñ 0,

where we additionally need e0 Ñ 0 as k Ó 0.
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Lax-Richtmyer, redux D11-S13(b)

Convergence of the scheme, under consistency and (Lax-Richtmyer) stability follows:

}en} “ }Bn}}e0} ` k
nÿ

j“1

}Bn´j}}⌧ j´1}

stability
§ CpT q

„
}e0} ` kn max

jPrns
}⌧ j´1}

⇢
,

§ CpT q
„

}e0} ` T max
jPrns

}⌧ j´1}
⇢
,

k,hÓ0+ consistency›Ñ 0,

where we additionally need e0 Ñ 0 as k Ó 0.
We have just shown part of the following result:

Theorem (Lax-Richtmyer Equivalence)
A linear scheme is convergent if and only if it is consistent and (Lax-Richtmyer) stable.

I.e.,

Stability ` Consistency “ Convergence
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Achieving stability D11-S14(a)

How would we achieve (Lax-Richtmyer) stability? The general form is,

un`1 “ Bun ` fn,

and our Forward Euler in time, central difference in space approximation is,

un`1 “ un ` kAun “ pI ` kAqun,

so for stability, say in the 2-norm, we require,

}pI ` kAqn}2 § 1.
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Achieving stability D11-S14(b)

How would we achieve (Lax-Richtmyer) stability? The general form is,

un`1 “ Bun ` fn,

and our Forward Euler in time, central difference in space approximation is,

un`1 “ un ` kAun “ pI ` kAqun,

so for stability, say in the 2-norm, we require,

}pI ` kAqn}2 § 1.

Using submutiplicativity of the norm, this is ensured with

}I ` kA}2 § 1,

which, in turn due to symmetry of I, A requires,

|1 ` k�jpAq| § 1.
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Achieving stability D11-S14(c)

How would we achieve (Lax-Richtmyer) stability? The general form is,

un`1 “ Bun ` fn,

and our Forward Euler in time, central difference in space approximation is,

un`1 “ un ` kAun “ pI ` kAqun,

so for stability, say in the 2-norm, we require,

}pI ` kAqn}2 § 1.

Using submutiplicativity of the norm, this is ensured with

}I ` kA}2 § 1,

which, in turn due to symmetry of I, A requires,

|1 ` k�jpAq| § 1.

Since all eigenvalues of A are real and negative, this is ensured via,

k|�minpAq| § 2 ùñ k § h2

2

which is exactly the same requirement we obtained from absolute stability.
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Scheme convergence D11-S15(a)

Thus, we have that

ut “ uxx ›Ñ D`un
j “ D`D´un

j

has an LTE and stability criterion:

LTEn “ Opk2 ` hq

k § h2

2

Thus, under these conditions, we expect the scheme error to behave like k ` h2.
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Scheme convergence D11-S15(b)

Thus, we have that

ut “ uxx ›Ñ D`un
j “ D`D´un

j

has an LTE and stability criterion:

LTEn “ Opk2 ` hq

k § h2

2

Thus, under these conditions, we expect the scheme error to behave like k ` h2.

This explain many “weird” issues we observed when naively trying to ascertain convergence of this method:
– Things are unstable if we don’t satisfy k À h2. In particular k „ h is not useful.
– How would we numerically verify h convergence? We’d need to

§ Pick a smallest h, say hmin
§ Fix k § h2

min{2
§ Compare errors for h “ hmin, 2hmin, 4hmin, 8hmin, . . .

– How would we numerically verify k convergence?
§ k " h2

is not possible, k ! h2
is not possible.

§ When refining k, must correspondingly refine h to satisfy, h „
?
2k.
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Scheme convergence D11-S15(c)

Thus, we have that

ut “ uxx ›Ñ D`un
j “ D`D´un

j

has an LTE and stability criterion:

LTEn “ Opk2 ` hq

k § h2

2

Thus, under these conditions, we expect the scheme error to behave like k ` h2.

This explain many “weird” issues we observed when naively trying to ascertain convergence of this method:
– Things are unstable if we don’t satisfy k À h2. In particular k „ h is not useful.
– How would we numerically verify h convergence? We’d need to

§ Pick a smallest h, say hmin
§ Fix k § h2

min{2
§ Compare errors for h “ hmin, 2hmin, 4hmin, 8hmin, . . .

– How would we numerically verify k convergence?
§ k " h2

is not possible, k ! h2
is not possible.

§ When refining k, must correspondingly refine h to satisfy, h „
?
2k.
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Scheme convergence D11-S15(d)

Thus, we have that

ut “ uxx ›Ñ D`un
j “ D`D´un

j

has an LTE and stability criterion:

LTEn “ Opk2 ` hq

k § h2

2

Thus, under these conditions, we expect the scheme error to behave like k ` h2.

This explain many “weird” issues we observed when naively trying to ascertain convergence of this method:
– Things are unstable if we don’t satisfy k À h2. In particular k „ h is not useful.
– How would we numerically verify h convergence? We’d need to

§ Pick a smallest h, say hmin
§ Fix k § h2

min{2
§ Compare errors for h “ hmin, 2hmin, 4hmin, 8hmin, . . .

– How would we numerically verify k convergence?
§ k " h2

is not possible, k ! h2
is not possible.

§ When refining k, must correspondingly refine h to satisfy, h „
?
2k.
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Higher-order schemes? D11-S16(a)

What about “better” schemes?

du

dt
“ Au.

Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta 4.
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Higher-order schemes? D11-S16(b)

What about “better” schemes?

du

dt
“ Au.

Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta 4.
– Stability requires k À h2

– The LTE is k4 ` h2.
– Fix k, and varying h to satisfy k § h2{2 would allow us to detect h-convergence
– To detect k convergence, we require h2 À k4, which contradicts the stability condition

I.e., in this case there is little benefit to using RK4 – we won’t see any benefit.
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Higher-order schemes? D11-S16(c)

What about “better” schemes?

du

dt
“ Au.

Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta 4.
– Stability requires k À h2

– The LTE is k4 ` h2.
– Fix k, and varying h to satisfy k § h2{2 would allow us to detect h-convergence
– To detect k convergence, we require h2 À k4, which contradicts the stability condition

I.e., in this case there is little benefit to using RK4 – we won’t see any benefit.

If we alternatively use Crank-Nicholson:
– Stability is unconditional (}Bn} § 1 is automatic)
– The LTE is k2 ` h2.
– Fix k, varying h to satisfy k § h would allow us to detect h-convergence
– Fix h, varying k to satisfy h § k would allow us to detect k-convergence
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Von Neumann stability, I D11-S17(a)

We’ve seen that it’s possible to directly verify Lax-Richtmyer stability.

But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Neumann stability, is a much easier necessary (not sufficient) stability requirement.
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Von Neumann stability, I D11-S17(b)

We’ve seen that it’s possible to directly verify Lax-Richtmyer stability.

But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Neumann stability, is a much easier necessary (not sufficient) stability requirement.

Von Neumann stability proceeds by ignoring boundary conditions, and realizing that for linear differential equations,
complex exponentials are eigenfunctions.

E.g.,
`
ei!x

˘
xx

“ Cp!qei!x.

A similar computation is true for reasonable spatial discretizations of derivatives.
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Von Neumann stability, I D11-S17(c)

We’ve seen that it’s possible to directly verify Lax-Richtmyer stability.

But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Neumann stability, is a much easier necessary (not sufficient) stability requirement.

Von Neumann stability proceeds by ignoring boundary conditions, and realizing that for linear differential equations,
complex exponentials are eigenfunctions.

E.g.,
`
ei!x

˘
xx

“ Cp!qei!x.

A similar computation is true for reasonable spatial discretizations of derivatives.

Then a reasonable (somewhat empirical) notion of (Von Neumann) stability for a scheme would assert that the
scheme does not amplify eigenfunctions in time.
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Von Neumann stability, II D11-S18(a)

The general strategy for von Neumann stability on linear problems is to consider the scheme,

un`1
j “ Bpunq

for a linear operator B acting on the degrees of freedom at time step j. If we make the ansatz,

un “ ei!x ›Ñ un
j “ ei!xj “ ei!jh,

then we expect that plugging this into the scheme will yield the expression,

un`1
j “ gp!qei!jh,

for some constant gp!q.1

1In principle g can depend on j, but it will not if the discretization is spatially homogeneous.
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Von Neumann stability, II D11-S18(b)

The general strategy for von Neumann stability on linear problems is to consider the scheme,

un`1
j “ Bpunq

for a linear operator B acting on the degrees of freedom at time step j. If we make the ansatz,

un “ ei!x ›Ñ un
j “ ei!xj “ ei!jh,

then we expect that plugging this into the scheme will yield the expression,

un`1
j “ gp!qei!jh,

for some constant gp!q.1

The function g is called the (Von Neumann) amplification factor of the scheme.

The scheme will be (Von Neumann) stable if |gp!q| § 1.2

1In principle g can depend on j, but it will not if the discretization is spatially homogeneous.
2Like for Lax-Richtmyer stability, we’ll actually just need |gp!q| § 1 ` Ck.
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Examples D11-S19(a)

Example
Compute the Von Neumann stability condition for

D`un
j “ D`D´un

j

Setting un
j “ ei!jh, and un`1

j “ gp!qei!jh, then we have,

un`1
j “ un

j ` k

h2

“
un
j`1 ´ 2un

j ` un
j´1

‰

Ó

gp!qei!jh “ ei!jh ` k

h2
ei!jh

”
ei!h ´ 2 ` e´i!h

ı
,

i.e.,

gp!q “ 1 ` 2k

h2
pcos!h ´ 1q .
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Examples D11-S19(b)

Example
Compute the Von Neumann stability condition for

D`un
j “ D`D´un

j

Setting un
j “ ei!jh, and un`1

j “ gp!qei!jh, then we have,

un`1
j “ un

j ` k

h2

“
un
j`1 ´ 2un

j ` un
j´1

‰

Ó

gp!qei!jh “ ei!jh ` k

h2
ei!jh

”
ei!h ´ 2 ` e´i!h

ı
,

i.e.,

gp!q “ 1 ` 2k

h2
pcos!h ´ 1q .

Since ´2 § pcos!h ´ 1q § 0, then |gp!q| § 1 if

2k

h2
§ 1 ùñ k § h2

2
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Examples D11-S19(c)

Example
Compute the Von Neumann stability condition for

D`un
j “ D`D´un

j

Example
Compute the Von Neumann stability condition for

D`un
j “ 1

2
D`D´un

j ` 1

2
D`D´un`1

j
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Examples D11-S19(d)

Example
Compute the Von Neumann stability condition for

D`un
j “ D`D´un

j

Example
Compute the Von Neumann stability condition for

D`un
j “ 1

2
D`D´un

j ` 1

2
D`D´un`1

j

Example
Compute the Von Neumann stability condition for

D`un
j “ D0u

n
j
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