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FD for parabolic problems D11-S02(a)

We've considered the problem and FD discretization,

Ut = Uge, u(x70) = UO(J?)
DFu} = D_Dyu7,

with periodic boundary conditions, and
— Equidistant discretization for x and ¢

- x; = 2% j € [M]. Periodic BC's: we identify ;s <> zo.
hZA%ij_}_l —mj
—th=nk, k>0forn=0,1,...
k=At =1t — 1t
- ul mu(z;,tn), u" = (ug,... sut, )7
Up next: Stability, accuracy, convergence, etc.
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Method of lines D11-S03(a)
DFu} = D_Dyu7,

The scheme above is fully discrete.

A more transparent understanding of algorithmic behavior can be gained from investigating the semi-discrete scheme:

. . d
Up = Upy Discretize Space) dtu(t) _ A'U,(t), u — (Ul (t), o ,uM(t))T

With periodic boundary conditions, then A is the matrix,

h?A =
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Method of lines, I D11-S04(a)

Discretize space d
dt
This reduction of a partial differential equation, to a system of ordinary ones through discretization, is called the
method of lines.

u(t) = Au(t), u = (ul(t),...,uM(t))T

Ut = Ugy

Uo(t) Ul(l) U2(l) Um_l(l‘) Um—l—l(t)

X0 X1 X2 Xm—1 Xm Xm+1

Figure: Method of lines visualization. LeVeque 2007, Figure 9.2
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Method of lines, IlI D11-S05(a)

Discretize space d
N

() = Au?), w = (ur(t),...,un(t)”

Ut = Ugx

The semi-discrete form is useful in decoupling space and time.

In particular, it's something we know how to understand from a time-integration point of view:
— Stability (A-stabiltiy, O-stability)
— Accuracy (time discretization)

— Convergence (conditioned on a fixed spatial discretization)
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Method of lines, IlI D11-S05(b)

iscretize space d
w= gy S Su(l) = Au(), w=(u1(t), ..., ups ()7

The semi-discrete form is useful in decoupling space and time.

In particular, it's something we know how to understand from a time-integration point of view:
— Stability (A-stabiltiy, O-stability)
— Accuracy (time discretization)
— Convergence (conditioned on a fixed spatial discretization)

Convergence to the solution of the original PDE solution does require some interaction of space and time.

In particular: obtaining a very numerically accurate solution to w(t) in isolation does not reveal accuracy relative to
the exact PDE solution. (The latter is what we really care about.)

A. Narayan (U. Utah — Math/SCI) Math 6620: Finite difference methods, 11



Stability D11-S06(a)

d

au(t) — Au(t), u = (U1 (t), . ,uM(t))T

We understand how to generate reasonable schemes for this: any O-stable method could suffice.

To fix some details, one typically initially considers the simplest scheme to understand the system: Forward Euler.
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Stability D11-S06(b)

d

au(t) — Au(t), u = (U1 (t), . ,uM(t))T

We understand how to generate reasonable schemes for this: any 0-stable method could suffice.

To fix some details, one typically initially considers the simplest scheme to understand the system: Forward Euler.
"t = u™ + kAU

This is a linear ODE, and so one simple concept to explore is absolute stability.

Is it reasonable to expect behavior of the discrete solution corresponding to absolute stability?

ug—uw ’*7(:[4{14157“6 5 ol

t2p

7y
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Stability D11-S06(c)

d

au(t) — Au(t), u = (U1 (t), . ,uM(t))T

We understand how to generate reasonable schemes for this: any 0-stable method could suffice.

To fix some details, one typically initially considers the simplest scheme to understand the system: Forward Euler.
"t = u™ 4+ kAU

This is a linear ODE, and so one simple concept to explore is absolute stability.

Is it reasonable to expect behavior of the discrete solution corresponding to absolute stability?

To determine stability, the eigenvalues/vectors of A are explicitly computable:

R 7r3 ~ | 3—=1, jodd :
Aj(A) = Tz o (m) ; J = { ], j even j € [M]

Note that the eigenvalues all have negative real parts ... as we hope for.
- [
4", w2 zu(2m) ) u'o)= o' 2rr)
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Stiffness D11-S07(a)

d
au(t) = Au(?), u = (ui(t),...,upn(t)"
' 4 5 7r3 ~ | 3—=1, jodd :
Ai(A) ~ ~73 sin (W) : j = { j j even j e [M]

All these eigenvalues lie in the left half-plane, on the real axis. In particular,

4
deA)=—E§~4MQ Amax(4) ~ 1

C
)%4%*7@—Xxﬁ%§;“ -
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Stiffness D11-S07(b)

d
au(t) = Au(?), w = (u1(t),...,un(t)"
. 4 5 7r3 ~ | 3—=1, jodd :
Ai(A) ~ ~73 sin (W) : j = { j j even j e [M]

All these eigenvalues lie in the left half-plane, on the real axis. In particular,

4
Amin(A) = _ﬁ ~ 4M2 Amax(A) "‘7/10

Therefore, there are some parts of the solution that vary slowly (small |A|) and other parts of the solution that vary
quickly (large |A]).

This is a classic sign of stiffness of an ODE — since even moderate M causes large values of A\j,in/Amax, this is a stiff
system for those values of M.

The punch line: Although we have attempted to separate space and time, our choice of spatial discretization will
impact our time discretization.
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Stability D11-S08(a)

d

au(t) = Au(t), u = (u1(t),... ,uM(t))T

What does A-stability tell us about the time discretization? For Forward Euler, recall that the region of stability is
defined by,

lz+ 1| < 1, z = Ak,

with A being the eigevalues of A.
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Stability D11-S08(b)

d

au(t) = Au(t), u = (u1(t),... ,uM(t))T

What does A-stability tell us about the time discretization? For Forward Euler, recall that the region of stability is
defined by,

lz+ 1| <1, z = Ak,
with A being the eigevalues of A.

Since z = Ak is real-valued (and negative in this case), we really have the condition,

h2
z=2 -2 = klnmnAQ)|<2 = l<:<?

Note that this is a rather disappointing stability requirement. (Consider, say, h = 0.01)
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Stability D11-S08(c)

MR AT (k)

d

—u

dt
What does A-stability tell us about the time discretization? For Forward Euler, recall that the region of stability is
defined by,

(t) = Au(t), u = (u1(t),...,up(t)T

|z + 1] < 1, z = Ak,
with X\ being the eigevalues of A.

Since z = Ak is real-valued (and negative in this case), we really have the condition,

h2
2z -2 = kPDnmA)|<2 = k< o

Note that this is a rather disappointing stability requirement. (Consider, say, h = 0.01)

For this PDE, violating this notion of stability is bad: this PDE dissipates energy. Violating stability causes energy to
grow.

Note that changing the type of explicit time-stepping scheme (RK, multi-step, etc) does not really change this
stability condition, up to some O(1) constants.

The only real remedy is an A-stable (implicit) scheme.
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Local truncation error D11-S09(a)

Ut = Ugg, ’U,(%,O) = UO(SU)
DYu? = D_Dyu7,

For computing the local truncation error, considering the semi-discrete scheme does not provide much benefit.
The LTE is the scheme residual when the exact (smooth) solution is inserted:
LTE™ = D w(xj,tn) — D—Dyu(x;,tn) ~ O(h? + k).

As before, we say a scheme is consistent if limy, 5, o LTE™ = 0.
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Local truncation error D11-S09(b)

Ut = Ugg, ’U,(CE,O) = U()(SU)
DYu? = D_Dyu7,

For computing the local truncation error, considering the semi-discrete scheme does not provide much benefit.
The LTE is the scheme residual when the exact (smooth) solution is inserted:
LTE™ = D w(xj,tn) — D—Dyu(x;,tn) ~ O(h? + k).

As before, we say a scheme is consistent if limy, 5, o LTE™ = 0.

Naturally, the temporal order of convergence kP would change depending on the LTE of the time-stepping scheme.

Without directly considering cost of space vs time discretization, one would logically want to balance the LTE by
choosing k ~ h?, which is similar to the stability condition.

However, we've already seen that this is not really an attractive strategy for choosing k, motivating that this scheme
is not really a very good one.
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Convergence, | D11-S10(a)

As usual, the holy grail is convergence. The idea for how to proceed is similar to what we've seen before:

The numerical solution satisfies the scheme exactly:
un—|—1 — Bu" + fn’

where ( I#-[(A,)

— B is a matrix such 5‘,«4 for the Forward Euler method
— f™ is any inhomogeneity in the equation (e.g., the term f in uy = uzy + f(2,t))
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Convergence, | D11-S10(b)

As usual, the holy grail is convergence. The idea for how to proceed is similar to what we've seen before:

The numerical solution satisfies the scheme exactly:

un—l—l — B’Ll,n + fn’

where
— B is a matrix such kA for the Forward Euler method

— f™ is any inhomogeneity in the equation (e.g., the term f in uy = uzy + f(2,t))

The exact solution u(z,t) at the grids points U(t) satisfies the scheme with an LTE correction 7,,:

U(tnt1) = BU(tn) + f" + k74,
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Convergence, | D11-S10(c)

As usual, the holy grail is convergence. The idea for how to proceed is similar to what we've seen before:
The numerical solution satisfies the scheme exactly:
un—l—l — Bu" + fn’

where
— B is a matrix such kA for the Forward Euler method

— f™ is any inhomogeneity in the equation (e.g., the term f in uy = uzy + f(2,t))

The exact solution u(z,t) at the grids points U(t) satisfies the scheme with an LTE correction 7,,:
U(tnt+1) = BU(tn) + f" + kTn,
Subtracting these two, the error e,, := U(t,) — u™ satisfies,
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Convergence, |l D11-S11(a)

un—{—l = Bu™ + fn’
U(tn+1) = BU(tn) + f7 + k7n,

Iterating the error equation, we conclude,
n
en = B"eg + k Z B iyi—1
j=1
where T bounds T,, for all n.

NB: the superscripts n and n — j on B are exponents.
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Convergence, Il D11-S12(a)

Therefore,

mn
lenl = 1B [leol +& > B2
j=1

A. Narayan (U. Utah — Math/SCI) Math 6620: Finite difference methods, 11



Convergence, Il D11-S12(b)

Therefore,

lenl = 1B™|leoll +& > [ B™ 7|7~}
j=1

This reveals that we need to control B™, motivating a new definition.

Definition
A numerical scheme of the form u™ ! = Bu™ + " for computing a solution up to terminal time T is

Lax-Richtmyer stable if
1B"| < o(T), FE: B= Tk

for all k sufficiently small and all time indices n satisfying nk < T..
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Convergence, Il D11-S12(c)

Therefore,
n
. -
len] = IB™|lleol + & >} [B™ [+
j=1
This reveals that we need to control B™, motivating a new definition.
Definition

A numerical scheme of the form u™ ! = Bu™ + " for computing a solution up to terminal time T is
Lax-Richtmyer stable if

|B™|| < C(T),
for all k sufficiently small and all time indices n satisfying nk < T..

In practice, showing | B|| < 1 + Ck for some constant C independent of k is enough.

81"~ (&)
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Lax-Richtmyer, redux D11-S13(a)

Convergence of the scheme, under consistency and (Lax-Richtmyer) stability follows:

lenl = [B™lleoll + & Y |B™ 7|7~
j=1

stability i1
< o) [eol + bn s 1971 .
JE€[n]

<0@4wm+Tmmhfw}
je[n]

k,h |0+ consistency
—

0,

where we additionally need ?X_) Oas k| 0.
e

0

—
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Lax-Richtmyer, redux D11-S13(b)

Convergence of the scheme, under consistency and (Lax-Richtmyer) stability follows:

lenl = 1B [lleol + k& >, [B*7||=7~1|
j=1

stability i1
<o) |leol + kn max |+ |
jeln]

< (1) |leol + T max |71,
J€[n]

k,h |0+ consistency
—

0,

where we additionally need e® — 0 as k | 0.
We have just shown part of the following result:

Theorem (Lax-Richtmyer Equivalence)
A linear scheme is convergent if and only if it is consistent and (Lax-Richtmyer) stable.
l.e.,

Stability + Consistency = Convergence
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Achieving stability D11-S14(a)
How would we achieve (Lax-Richtmyer) stability? The general form is,
u"tt = Bu™ + ",
and our Forward Euler in time, central difference in space approximation is,
u" Tl = u" + kAU = (I + EA) u”, (JSQUW 7['\:9)
so for stability, say in the 2-norm, we require,

(I +EA)™|, < 1.
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Achieving stability D11-S14(b)
How would we achieve (Lax-Richtmyer) stability? The general form is,

u"tt = Bu™ + ",
and our Forward Euler in time, central difference in space approximation is,

u !l = u" + kAU = (I + kA)u”™,

so for stability, say in the 2-norm, we require,

(I +EA)™|, < 1.
Using submutiplicativity of the norm, this is ensured with

I+ kA2 <1,

which, in turn due to symmetry of I, A requires,

|1 —+ k)\j(A)| < 1.
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Achieving stability D11-S14(c)

n
How would we achieve (Lax-Richtmyer) stability? The general form is, ; (//0”’
u"tl = Bu" + ", U= '
and our Forward Euler in time, central difference in space approximation is, Y
u"tl = u" + kAu" = (I + kA)u”, M
so for stability, say in the 2-norm, we require, MA:;

(I + kA", < 1.
Using submutiplicativity of the norm, this is ensured with
I+ EkEA|2 <1,
which, in turn due to symmetry of I, A requires,
11+ kX (A) < 1.
Since all eigenvalues of A are real and negative, this is ensured via,

h2
Eldmin(A)]| <2 = k< ey

which is exactly the same requirement we obtained from absolute stability.
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Scheme convergence D11-S15(a)

Thus, we have that
Ut = Ugpy  — D+u? = D+D_u?
has an LTE and stability criterion:
LTE, = O(k* + h)
k< %2

Thus, under these conditions, we expect the scheme error to behave like k + h?.

A. Narayan (U. Utah — Math/SCI) Math 6620: Finite difference methods, 11



Scheme convergence D11-S15(b)

Thus, we have that
Ut = Ugpy  — D+u? = D+D_u?
has an LTE and stability criterion:

LTE, = O(k? + h)

2
kgh_
2

Thus, under these conditions, we expect the scheme error to behave like k + h?.

This explain many “weird” issues we observed when naively trying to ascertain convergence of this method:

— Things are unstable if we don't satisfy k < h2. In particular k ~ h is not useful.
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Scheme convergence D11-S15(c)

Thus, we have that
Ut = Upye  — D+u? = D+D_u?

has an LTE and stability criterion:

K rh*
LTE, = O(k* + h)

2
kgh_
2

Thus, under these conditions, we expect the scheme error to behave like k + h?.

This explain many “weird” issues we observed when naively trying to ascertain convergence of this method:

— Things are unstable if we don't satisfy k < h2. In particular k ~ h is not useful.
— How would we numerically verify h convergence? We'd need to

> Pick a smallest h, say hpnin
> Fix k < hZ, /2
> Compare errors for h = hAmin, 2hmin; 4Amin, 8Amin, - - -
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Scheme convergence D11-S15(d)

Thus, we have that

has an LTE and stability criterion:

Thus, under these conditions, we expect the scheme error to behave like k + h?.

This explain many “weird” issues we observed when naively trying to ascertain convergence of this method:

— Things are unstable if we don't satisfy k < h2. In particular k ~ h is not useful.
— How would we numerically verify h convergence? We'd need to

> Pick a smallest h, say hpnin

> Fix k < h2, /2

> Compare errors for h = hAmin, 2hmin; 4Amin, 8Amin, - - -
— How would we numerically verify k convergence?

» k> h?is not possible, k « h2 is not possible.
> When refining k, must correspondingly refine h to satisfy, h ~ v/2k.
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Higher-order schemes? D11-S16(a)

What about “better’ schemes?

d
v Au.
dt

Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta 4.
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Higher-order schemes? D11-S16(b)

What about “better’ schemes?

d
v Au.
dt

Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta 4.
— Stability requires k < h?
— The LTE is k* + h2.
— Fix k, and varying h to satisfy k < h?/2 would allow us to detect h-convergence
— To detect k convergence, we require h? < k%, which contradicts the stability condition

l.e., in this case there is little benefit to using RK4 — we won't see any benefit.
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Higher-order schemes? D11-S16(c)

What about “better’ schemes?

d
v Au.
dt

Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta 4.
— Stability requires k < h?
— The LTE is k* + h2.
— Fix k, and varying h to satisfy k < h?/2 would allow us to detect h-convergence
— To detect k convergence, we require h? < k%, which contradicts the stability condition

l.e., in this case there is little benefit to using RK4 — we won't see any benefit.

If we alternatively use Crank-Nicholson:
— Stability is unconditional (|B™|| < 1 is automatic)
— The LTE is k2 + h2.
— Fix k, varying h to satisfy

k < h would allow us to detect h-convergence
— Fix h, varying k to satisfy h < k

would allow us to detect k-convergence
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Von Neumann stability, | D11-S17(a)

We've seen that it's possible to directly verify Lax-Richtmyer stability.
But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Neumann stability, is a much easier necessary (not sufficient) stability requirement.
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Von Neumann stability, | D11-S17(b)

We've seen that it's possible to directly verify Lax-Richtmyer stability.
But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Neumann stability, is a much easier necessary (not sufficient) stability requirement.

Von Neumann stability proceeds by ignoring boundary conditions, and realizing that for linear differential equations,
complex exponentials are eigenfunctions.

Eg.,
(eiwx)xw _ C(w)eiwx‘

A similar computation is true for reasonable spatial discretizations of derivatives.

A. Narayan (U. Utah — Math/SCI) Math 6620: Finite difference methods, 11



Von Neumann stability, | D11-S17(c)

We've seen that it's possible to directly verify Lax-Richtmyer stability.
But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Neumann stability, is a much easier necessary (not sufficient) stability requirement.

Von Neumann stability proceeds by ignoring boundary conditions, and realizing that for linear differential equations,
complex exponentials are eigenfunctions.

Eg.,
(eiwx>xx _ C(w)eiwx‘

A similar computation is true for reasonable spatial discretizations of derivatives.

Then a reasonable (somewhat empirical) notion of (Von Neumann) stability for a scheme would assert that the
scheme does not amplify eigenfunctions in time.
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Von Neumann stability, I

The general strategy for von Neumann stability on linear problems is to consider the scheme,

u?—l-l _ B(un)
N

for a linear operator B acting on the degrees of freedom at time step/}'./ If we make the ansatz,

u” = W u;@ — WTj — ezwyh’

then we expect that plugging this into the scheme will yield the expression,

n+l

ul = g(w)e™ I,

for some constant g(w).!

1In principle g can depend on j, but it will not if the discretization is spatially homogeneous.

D11-S18(a)
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Von Neumann stability, I D11-S18(b)

The general strategy for von Neumann stability on linear problems is to consider the scheme,

u?—l-l _ B(’U,n)

for a linear operator B acting on the degrees of freedom at time step j. If we make the ansatz,
n twx n WT eiwjh

u =e —  u; =e ,

then we expect that plugging this into the scheme will yield the expression,

uf = g(w)

ezwgh’
for some constant g(w).!

The function g is called the (Von Neumann) amplification factor of the scheme.

The scheme will be (Von Neumann) stable if |g(w)] < 1.2

1In principle g can depend on j, but it will not if the discretization is spatially homogeneous.
2|ike for Lax-Richtmyer stability, we'll actually just need lg(w)| < 1+ Ck.
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Examples D11-S19(a)

Example

Compute the Von Neumann stability condition for

D*u? = DyD_u?

Setting u;‘ = e'wih and u?Jrl = g(w)e*I" then we have,

n n k n n n
“j+1 =Yt [ufy1 — 2uf +uj ]
l
g(w)eiwjh _ giwih | %ez’wjh [eiwh 94 e—iwh] ,
i.e.,
2k
g(w)=1—|—ﬁ(coswh—1). W&U‘é, 7 L\DD
weehel-) 1) =7 (costh- 1) e - 2 03 23y}
= M el )1 ¢
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Examples

Example

Compute the Von Neumann stability condition for

Du} = Dy D_u}

Setting u;b = e¢wih and u?""l = g(w)e’I" then we have,

n+1

(I
J

k

g(w)ez’wjh _ giwih h_eriwjh [ez’wh 94 e—wh] ,

2k
gw) =1+ 2 (coswh —1).

Since —2 < (coswh — 1) <0, then |g(w)| < 1 if

2k h?
— <1 = k< —
h2 2

D11-S19(b)
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Examples D11-S19(c)

Example

Compute the Von Neumann stability condition for

D*u? = DyD_u?

Example

Compute the Von Neumann stability condition for

1 1
nel Yoo .
u& ‘3(&3 (”’“Jh} Uy = €N”IJL\

u,”“— U-/\
J n
> = b R N ’Zlﬁ/ujj,' - (/J"“ : ujﬁjjj
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h
f/w/ (QCowh 2)g/“ QI/\Q{Q[OSWL‘N%}I
f’/'”g(w)
gl =~ 5 (k1) ¢ lisude ) gl

N~ —
2<0D 2

g&,\/)— l"‘ I,ﬁt?* (?50)

= (ﬂ[wl 2 } ((IUV][()V\(JHWMQ}/J Stably ")



Examples D11-S19(d)

Example

Compute the Von Neumann stability condition for

D*u? = DyD_u?

Example
Compute the Von Neumann stability condition for

1
DTu? =

1 n+1
j §D+D_’U,§L + §D+D_’U,J

Example

Compute the Von Neumann stability condition for

+ n _ n
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