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Basics concepts for linear PDEs D10-S02(a)

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some basic theory for linear PDEs.
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Basics concepts for linear PDEs D10-S02(b)

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some basic theory for linear PDEs.

Consider a scalar PDE for u = u(z,t) having the form,

0
ut = p 8_:1: u,

with periodic boundary conditions on x € [0, 27).
Above, p is a is an operator involving (possibly high-order) spatial derivatives of w.
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Basics concepts for linear PDEs D10-S02(c)

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some basic theory for linear PDEs.

Consider a scalar PDE for u = u(z,t) having the form,

(%)

Ut = — | u,

t =D o0z

with periodic boundary conditions on x € [0, 27).

Above, p is a is an operator involving (possibly high-order) spatial derivatives of w.

Example

The operator,

o\ _
& ox )  0x2

corresponds to a prototypical parabolic equation, which we will our focus in these slides.

This is, in many senses, the “easiest” example.
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Basics concepts for linear PDEs D10-S02(d)

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some basic theory for linear PDEs.

Consider a scalar PDE for u = u(z,t) having the form,

(%)

Ut = — | u,

t =D o0z

with periodic boundary conditions on x € [0, 27).

Above, p is a is an operator involving (possibly high-order) spatial derivatives of w.

Example

The operator,

x

p(2) =@ 2 + = (se)2 ) + r(a),

corresponds to a convection-reaction-diffusion problem with variable coefficients.

All of what follows applies for vector-valued problems in multiple space dimensions, as well.
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Fourier transforms D10-S03(a)

Our main tool to understand basic PDEs will be Fourier transforms: Given a function f(x) on [0, 27), the Fourier
Transform of/z is given by,
Y - A= [ s (0, ) = et
w) = = z)p(z,w)d, T,w) = e’
21

0

where w € Z, and ¢ is the complex conjugate with i = /—1 the imaginary unit.
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Fourier transforms D10-S03(b)

Our main tool to understand basic PDEs will be Fourier transforms: Given a function f(x) on [0, 27), the Fourier
Transform of x is given by,

27 1

Fw)=FIfl:== | f@)(w)de, B, w) = e,

0

where w € Z, and ¢ is the complex conjugate with i = /—1 the imaginary unit.

The Fourier transform is an isometry between L2([0,27]; C) and ¢2(%; C):

27
| r@ra = 3 pe)P,

0 WEZ

and in particular F and F~! are well-defined operations,

f@) E FFPW)] = Y Fweew).

WEZ
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Fourier transforms D10-S03(c)

Our main tool to understand basic PDEs will be Fourier transforms: Given a function f(x) on [0, 27), the Fourier
Transform of x is given by,

27 1

Fw)=FIfl:== | f@)(w)de, B, w) = e,

0

where w € Z, and ¢ is the complex conjugate with i = /—1 the imaginary unit.

The Fourier transform is an isometry between L2([0,27]; C) and ¢2(%; C):

27
| r@ra = 3 pe)P,

0 WEZ

and in particular F and F~! are well-defined operations,

L> -1
fl@) = FUF(W)] = ), F(w)é(z,w).
wWEZ
A particularly important property of Fourier transforms for us is the w-representation of spatial derivatives:

F (%f) — W F(w)
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Symbols of differential operators D10-S04(a)
Fourier transforms allow us to “easily” identify solutions to PDEs:

Since p (%) u is a linear differential operator acting on u, then the Fourier transform of this expression is a

polynomial in w,

F o (£ ) ule)] = P@UE@0,

X

where U is the Fourier transform of w.

The function P(w) is called the symbol (of the operator p(a%)).
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Symbols of differential operators D10-S04(b)

Fourier transforms allow us to “easily” identify solutions to PDEs:

Since p (%) u is a linear differential operator acting on u, then the Fourier transform of this expression is a

polynomial in w,

F [p (0%) u(x,t)] = P(w)U(w,t),
where U is the Fourier transform of w.

The function P(w) is called the symbol (of the operator p(a%)).

The symbol makes solving linear PDE's “easy™:

ur = p (%) u, u(z, 0) = uo(z)

VL] b FL]
d

EU((,u,t) = P(w)U, U(w,O) = UO(W)'

This is just a(n infinite) decoupled system of ordinary differential equations.
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Symbols of differential operators D10-S04(c)
Fourier transforms allow us to “easily” identify solutions to PDEs:

Since p ( > u is a linear differential operator acting on u, then the Fourier transform of this expression is a

]—"[ ( d )u(x t)] P(w)U(w,t),

polynomial in w,

ox

where U is the Fourier transform of w.
The function P(w) is called the symbol (of the operator p( —))-

The symbol makes solving linear PDE's “easy™:

ur = p (;ﬂc) u, u(z, 0) = uo(z)

VL] U FL]
d

aU(w,t) = P(w)U, U(w,0) = Up(w).
This is just a(n infinite) decoupled system of ordinary differential equations.
The solution is
w .
U(w,t) = Up(w)e" @t — wu(z,t) = Z U(w, t)p(z,w) = Z Up(w)el (@)teiw,
weZ =00
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Well-posedness D10-S05(a)

=p<%> u, w(z,0) = ug(z).
1

_ Z U()(w P(w)t W
‘2 WEZ

Although we obtained an explicit solution, there are some assumptions we need to ensure rigor of the arguments.

u(x,t)
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Well-posedness D10-S05(b)

=p<£> u, w(z,0) = ug(z).
1

u(az,t) _ \/2_ Z Uo(w P(w)t WL
WEZ

Although we obtained an explicit solution, there are some assumptions we need to ensure rigor of the arguments.

Definition
The PDE above is stable if there exists K, « € R such that

’ep(‘”)t' < Ke®t, t>0, weZ.

This notion of stability is a natural requirement for solvability of PDEs.
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Well-posedness D10-S05(c)

=p<%> u, w(z,0) = ug(z).
1

u(az,t) _ \/2_ Z Uo(w P(w)t WL

WEZ

Although we obtained an explicit solution, there are some assumptions we need to ensure rigor of the arguments.

Definition
The PDE above is stable if there exists K, « € R such that

’ep(w)t‘ < Ke®t, t>0, weZ.

This notion of stability is a natural requirement for solvability of PDEs.

Theorem (Well-posedness)

If the PDE above is stable, then the Fourier-based formula for u(x,t) above is the unique solution, and is “smooth”.
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The heat equation D10-S06(a)

Our simplest example of a parabolic equation is,
Ut = Ugg, ’U,(QZ, O) = UO(ZU),

with periodic boundary conditions on z € [0, 27).
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The heat equation D10-S06(b)

Our simplest example of a parabolic equation is,
Ut = Ugg, ’U,(QZ, O) = UO(ZU),

with periodic boundary conditions on z € [0, 27).

The symbol is rather easily computed here,

2
F [865132 u(z, t)] = —wQU(W,t) =: P(w)U(w,1).

Hence, the exact solution to this problem is,

Z Uo(w —w?t zw:c

WEZ

u(zx,t)

\/_
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The heat equation D10-S06(c)

Our simplest example of a parabolic equation is,
Ut = Ugg, ’U,(.QZ, O) = UO(ZU),

with periodic boundary conditions on z € [0, 27).
The symbol is rather easily computed here,
02 9
F | =—u(z,t)| = —wU(w,t) = P(w)U(w,1t).

ox?

Hence, the exact solution to this problem is,
u(zx,t) = b Z Uo(w)e_wzteiwx.
, V2T WEZ

The main point here is that initial frequency components Up(w) are attentuated exponentially in time.

P(w)t‘

In particular, |e < 1 for all t,w, so the PDE is stable and the solution above is unique 4+ smooth.
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Parabolic equations, | D10-S07(a)

Equations that behave essentially like the heat equation are parabolic problems.
Let (-,-> and || - | be the standard L?([0,27]) inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the derivative (variation) of u:

multiply by u, integrate d
> aHuH2 = —2[ua®.

Ut = Ugy
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Parabolic equations, | D10-S07(b)

Equations that behave essentially like the heat equation are parabolic problems.
Let (-,-> and || - | be the standard L?([0,27]) inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the derivative (variation) of u:

multiply by wu, integrate d 2 2
Ut = Uzgg > _Hu“ = _QHUZEH .
dt
Because of this, a linear PDE (defined by the operator p) is parabolic if
2
<u,pu> + <pu7 u> < _5Hu$ H )
for some 6 > 0.
Such an equation is “at least” as dissipative as u+ = dugz.
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Parabolic equations, | D10-S07(c)

Equations that behave essentially like the heat equation are parabolic problems.
Let (-,-> and || - | be the standard L?([0,27]) inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the derivative (variation) of u:

multiply by u, integrate d
> aHUH2 = —2[ua®.

Ut = Ugy

Because of this, a linear PDE (defined by the operator p) is parabolic if
<u,pu> + <pu7 u> < _5Hu$ H27

for some 6 > 0.

Such an equation is “at least” as dissipative as u+ = duz,. For example,

up = i k(z)ug),

ox

is parabolic if inf; k(z) = 6 > 0.
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Parabolic equations, Il D10-S08(a)

A conceptually simple example of a PDE that is not stable (certainly not parabolic) is,
Ut = —Ugq, u(z,0) = up(x),
whose symbol is P(w) = w?2. In particular, there is no K, « such that,

|ew2t| < Keat

for every w € Z. Consequently, this is not a stable (or well-posed) PDE.
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Parabolic equations, Il D10-S08(b)

A conceptually simple example of a PDE that is not stable (certainly not parabolic) is,
Ut = —Ugq, u(z,0) = up(x),
whose symbol is P(w) = w?2. In particular, there is no K, « such that,
2
|ew t| < Keat
for every w € Z. Consequently, this is not a stable (or well-posed) PDE.

When designing numerical methods, it's helpful to understand theoretical expectations for the scheme.
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Finite difference methods: the heat equation D10-S09(a)
With an understanding of what is expected from parabolic problems, let's discretize the heat equation,
Ut = Ugyg, u(x,0) = ug(x), u(0,t) = u(2m, 1),

for x € [0, 27).
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Finite difference methods: the heat equation D10-S09(b)

With an understanding of what is expected from parabolic problems, let's discretize the heat equation,
Ut = Ugyg, u(x,0) = ug(x), u(0,t) = u(2m, 1),

for x € [0, 27).
One strategy to dive right in:

— Equidistant discretization for z and ¢ o
- X 55—, j € [M]. Periodic BC's: we identify zs <> 0. X = 277 %4
= Ax = Lji+1l — Ty J
—th=nk,k>0forn=0,1,...
k=At =1t —tg
- ul mu(z;,tn), u" = (ug,... cult, )7
— use our standard D_ D discretization for uyy

1

— use a Forward Euler discretization for u: D+u? =7 (uT.LJrl —um

J J
NB: The superscript n is a temporal index, not an exponent.
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Finite difference methods: the heat equation

D10-509(c)

With an understanding of what is expected from parabolic problems, let's discretize the heat equation,

Ut = Uga, u(x,0) = ug(x),

for x € [0, 27).
One strategy to dive right in:

NB:
The

Equidistant discretization for = and t

Ti = L, € [M]. Periodic BC's: we identify x; < x¢.
J M2 J

h:Ax:xj+1 —.CUj

tn, =mk, k>0forn=0,1,...

k=At =1t —tg

n
u'
J

use our standard D_ D discretization for ugzy

~u(zj,tn), u” = (ug,...,u}”{/[_l)T

1
k

The superscript n is a temporal index, not an exponent.

. u”)

(u]

use a Forward Euler discretization for u;: D+u? =

scheme is then:

D¥u} = D_Diu}, j € [M],

u(0,t) = u(2m, 1),
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FD stencils D10-S10(a)

DYu? = D_Dyub, j e [M], n

\%
o

This scheme, more explicity, is given by,

k
n+1 n n n n
w, ' o=u; + (uj 1 — 2u; +u; 1).

J J h2
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FD stencils

DYu? = D_Dyub, j e [M],

This scheme, more explicity, is given by,

k
n+1 n n n n
w, ' o=u; + (uj 1 — 2u; +u; 1).

J J h2

To practice this notation: here is Crank-Nicolson for the same spatial discretization,

Dyl = %D_Dw;% + %D_D+u;?+1, je[M],
i.e.,
u?Jrl = uj + %(u?_l —2ul + Uiy
u;ljll — 2u?+1 + ug’:ll)

WV

\%
o

D10-S10(b)
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FD stencils

DYu? = D_Dyub, j e [M],

This scheme, more explicity, is given by,

\%

D10-S10(c)

k
n+l _ ' n v n _ n n
uj = Ut (uf1 = 2} +ujiq).
To practice this notation: here is Crank-Nicolson for the same spatial discretization,
1 1
+ — n+1 .
D7 w3 = §D_D+u? + §D—D+uj , j e [M], > 0,
i.e.,
=W 4 L (u?_ 1 —2u” + u”?
J - op2 v J—1 J Jj+1
n+1 n+1 n+1
wily = 2ug T gl ).
In+1 o o
tn V—I—A *—————e ——©
Xj—1 Xj Xj+1
Figure: Finite difference stencils. LeVeque 2007, Figure 9.1
A. Narayan (U. Utah — Math/SCI) Math 6620: Finite difference methods, |



FD analysis D10-S11(a)

Ut = Uzx
DFu} = Dy D_uj.
This is our first finite difference scheme, but there are many questions we have yet to answer:
— Stability?
— Accuracy?
— Convergence?

— Other types of discretizations?
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