
Math 6630: Analysis of Numerical Methods, II

Solvers for initial value problems, Part IV

See Ascher and Petzold 1998, Chapters 1-5

Akil Narayan1

1
Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute

University of Utah

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, IV

 



Initial value problems D09-S02(a)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

We have previously discussed
– Simple schemes: forward/backward Euler, Crank-Nicolson
– Consistency and LTE
– 0-stability and scheme convergence
– absolute/A-stability and consequences
– multi-stage (Runge-Kutta) methods

Finally, we’ll discuss multi-step schemes.
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Preliminaries: polynomial interpolation D09-S03(a)

To begin we review some basic concepts about (univariate) polynomial interpolation:

Let f : Ñ be a scalar function, and let x0, . . . , xn be any distinct points on .

Theorem
There is a unique polynomial ppxq of degree n such that fpxjq “ ppxjq for all j “ 0, . . . , n.
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Preliminaries: polynomial interpolation D09-S03(b)

To begin we review some basic concepts about (univariate) polynomial interpolation:

Let f : Ñ be a scalar function, and let x0, . . . , xn be any distinct points on .

Theorem
There is a unique polynomial ppxq of degree n such that fpxjq “ ppxjq for all j “ 0, . . . , n.

One way to construct this polynomial is via divided differences. Define

f rxjs “ fpxjq, f rxj , . . . , xj``s “ f rxj`1, . . . , xj``s ´ f rxj , . . . , xj``´1s
xj`` ´ xj

,

which are approximations to `th derivatives. Then,

ppxq “
nÿ

`“0

f rx0, . . . , xjs
`´1π

j“0

px ´ xjq.

This is the Newton form of the interpolating polynomial.
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Preliminaries: polynomial interpolation D09-S03(c)

To begin we review some basic concepts about (univariate) polynomial interpolation:

Let f : Ñ be a scalar function, and let x0, . . . , xn be any distinct points on .

Theorem
There is a unique polynomial ppxq of degree n such that fpxjq “ ppxjq for all j “ 0, . . . , n.

One way to construct this polynomial is via divided differences. Define

f rxjs “ fpxjq, f rxj , . . . , xj``s “ f rxj`1, . . . , xj``s ´ f rxj , . . . , xj``´1s
xj`` ´ xj

,

which are approximations to `th derivatives. Then,

ppxq “
nÿ

`“0

f rx0, . . . , xjs
`´1π

j“0

px ´ xjq.

This is the Newton form of the interpolating polynomial.

If xj “ x0 ` jk for some k ° 0, then expressions simplify considerably and more explicit formulas can be derived.
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Preliminaries: difference equations D09-S04(a)

Simple theory for linear difference equations parallels linear differential equations:

upsqptq `
sÿ

j“1

↵ju
ps´jqptq “ 0, upjqp0q “ uj

0, j “ 0, . . . , s ´ 1.

Solve for a function uptq, t ° 0. The order is s ° 0.

Ansatz uptq “ ezt ùñ ppzq :“
sÿ

j“0

↵jz
s´j “ 0, p↵0 “ 1q

Solutions take the form uptq „ ezjt, where z1, . . . , zs are the roots of p.

Solutions uptq are stable if <zj § 0. (Asymptotically stable if <zj † 0.)

un `
sÿ

j“1

↵jun´j “ 0, un´j “ un´j,0, j “ 1, . . . , s.

Solve for a sequence u`, ` • 0. The order is s ° 0.

Ansatz un “ zn ùñ ppzq :“
sÿ

j“0

↵jz
s´j “ 0, p↵0 “ 1q

Solutions take the form un „ znj , where z1, . . . , zs are the roots of p.

Solutions un are stable if |zj | § 1. (Asymptotically stable if |zj | † 1.)
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Preliminaries: difference equations D09-S04(b)

Simple theory for linear difference equations parallels linear differential equations:

upsqptq `
sÿ

j“1

↵ju
ps´jqptq “ 0, upjqp0q “ uj

0, j “ 0, . . . , s ´ 1.

Solve for a function uptq, t ° 0. The order is s ° 0.

Ansatz uptq “ ezt ùñ ppzq :“
sÿ

j“0

↵jz
s´j “ 0, p↵0 “ 1q

Solutions take the form uptq „ ezjt, where z1, . . . , zs are the roots of p.

Solutions uptq are stable if <zj § 0. (Asymptotically stable if <zj † 0.)

un `
sÿ

j“1

↵jun´j “ 0, un´j “ un´j,0, j “ 1, . . . , s.

Solve for a sequence u`, ` • 0. The order is s ° 0.

Ansatz un “ zn ùñ ppzq :“
sÿ

j“0

↵jz
s´j “ 0, p↵0 “ 1q

Solutions take the form un „ znj , where z1, . . . , zs are the roots of p.

Solutions un are stable if |zj | § 1. (Asymptotically stable if |zj | † 1.)
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Preliminaries: difference equations D09-S04(c)

Simple theory for linear difference equations parallels linear differential equations:

upsqptq `
sÿ

j“1

↵ju
ps´jqptq “ 0, upjqp0q “ uj

0, j “ 0, . . . , s ´ 1.

Solve for a function uptq, t ° 0. The order is s ° 0.

Ansatz uptq “ ezt ùñ ppzq :“
sÿ

j“0

↵jz
s´j “ 0, p↵0 “ 1q

Solutions take the form uptq „ ezjt, where z1, . . . , zs are the roots of p.

Solutions uptq are stable if <zj § 0. (Asymptotically stable if <zj † 0.)

un `
sÿ

j“1

↵jun´j “ 0, un´j “ un´j,0, j “ 1, . . . , s.

Solve for a sequence u`, ` • 0. The order is s ° 0.

Ansatz un “ zn ùñ ppzq :“
sÿ

j“0

↵jz
s´j “ 0, p↵0 “ 1q

Solutions take the form un „ znj , where z1, . . . , zs are the roots of p.

Solutions un are stable if |zj | § 1. (Asymptotically stable if |zj | † 1.)
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Multi-step methods, I D09-S05(a)

For the IVP,

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

a general s-step multi-step scheme with timestep k has the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq, ↵j ,�j P
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Multi-step methods, I D09-S05(b)

For the IVP,

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

a general s-step multi-step scheme with timestep k has the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq, ↵j ,�j P

Comments:
– s “ 1 corresponds to a general single-step (and single-stage) method
– s ° 1: we need time history, e.g., un´2,un´3, . . .

– We assume ↵0 ‰ 0.
– We can rescale the equation by a constant without changing anything: we fix this freedom by setting ↵0 “ 1.
– To avoid some minor pathologies, we typically assume that either ↵j ‰ 0 or �j ‰ 0 for every j.
– �0 ‰ 0 corresponds to an implicit method. �0 “ 0 is an explicit method.
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Multi-step methods, I D09-S05(c)

For the IVP,

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

a general s-step multi-step scheme with timestep k has the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq, ↵j ,�j P

Comments:
– s “ 1 corresponds to a general single-step (and single-stage) method
– s ° 1: we need time history, e.g., un´2,un´3, . . .

– We assume ↵0 ‰ 0.
– We can rescale the equation by a constant without changing anything: we fix this freedom by setting ↵0 “ 1.
– To avoid some minor pathologies, we typically assume that either ↵j ‰ 0 or �j ‰ 0 for every j.
– �0 ‰ 0 corresponds to an implicit method. �0 “ 0 is an explicit method.
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Multi-step methods, I D09-S05(d)

For the IVP,

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

a general s-step multi-step scheme with timestep k has the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq, ↵j ,�j P

Comments:
– s “ 1 corresponds to a general single-step (and single-stage) method
– s ° 1: we need time history, e.g., un´2,un´3, . . .

– We assume ↵0 ‰ 0.
– We can rescale the equation by a constant without changing anything: we fix this freedom by setting ↵0 “ 1.
– To avoid some minor pathologies, we typically assume that either ↵j ‰ 0 or �j ‰ 0 for every j.
– �0 ‰ 0 corresponds to an implicit method. �0 “ 0 is an explicit method.
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Multi-step methods, I D09-S05(e)

For the IVP,

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

a general s-step multi-step scheme with timestep k has the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq, ↵j ,�j P

Comments:
– s “ 1 corresponds to a general single-step (and single-stage) method
– s ° 1: we need time history, e.g., un´2,un´3, . . .

– We assume ↵0 ‰ 0.
– We can rescale the equation by a constant without changing anything: we fix this freedom by setting ↵0 “ 1.
– To avoid some minor pathologies, we typically assume that either ↵j ‰ 0 or �j ‰ 0 for every j.
– �0 ‰ 0 corresponds to an implicit method. �0 “ 0 is an explicit method.
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Multi-step methods, I D09-S05(f)

For the IVP,

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

a general s-step multi-step scheme with timestep k has the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq, ↵j ,�j P

Comments:
– s “ 1 corresponds to a general single-step (and single-stage) method
– s ° 1: we need time history, e.g., un´2,un´3, . . .

– We assume ↵0 ‰ 0.
– We can rescale the equation by a constant without changing anything: we fix this freedom by setting ↵0 “ 1.
– To avoid some minor pathologies, we typically assume that either ↵j ‰ 0 or �j ‰ 0 for every j.
– �0 ‰ 0 corresponds to an implicit method. �0 “ 0 is an explicit method.
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Multi-step methods, II D09-S06(a)

To simplify notation, we will assume the ODE is autonomous (fpt,uq “ fpuq), and will abbreviate fpujq as fj .
Then the multi-step method takes the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfn`1´j

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, IV



Multi-step methods, II D09-S06(b)

To simplify notation, we will assume the ODE is autonomous (fpt,uq “ fpuq), and will abbreviate fpujq as fj .
Then the multi-step method takes the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfn`1´j

Generally speaking, the constants are chosen so that:
– The ↵j approximate d

dtuptnq
– The �j approximate 1

k

≥tn`1
tn

fpuprqqdr
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Multi-step methods, II D09-S06(c)

To simplify notation, we will assume the ODE is autonomous (fpt,uq “ fpuq), and will abbreviate fpujq as fj .
Then the multi-step method takes the form,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfn`1´j

Generally speaking, the constants are chosen so that:
– The ↵j approximate d

dtuptnq
– The �j approximate 1

k

≥tn`1
tn

fpuprqqdr
There are some miscellaneous issues we’ll answer later, e.g.,

– If s • 2, how is u1 computed from u0?
– Must we fix the time-step k?
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A warmup: single-step specializations D09-S07(a)

Specializing to single-step methods (s “ 1) yields a transparent family of methods:

un`1 ` ↵1un “ k
`
�0fn`1 ` �1fn

˘
.

(Recall ↵0 “ 1)
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A warmup: single-step specializations D09-S07(b)

Specializing to single-step methods (s “ 1) yields a transparent family of methods:

un`1 ` ↵1un “ k
`
�0fn`1 ` �1fn

˘
.

(Recall ↵0 “ 1)

For any reasonable notion of consistency (to approximate u1ptnq), we should take ↵1 “ ´1.
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A warmup: single-step specializations D09-S07(c)

Specializing to single-step methods (s “ 1) yields a transparent family of methods:

un`1 ` ↵1un “ k
`
�0fn`1 ` �1fn

˘
.

(Recall ↵0 “ 1)

For any reasonable notion of consistency (to approximate u1ptnq), we should take ↵1 “ ´1.

With this restriction, then we have

un`1 ´ un “ k
`
�0fn`1 ` �1fn

˘
,

and hence the right hand side should approximate
≥tn`1
tn

fpuprqqdr, requiring �0 ` �1 “ 1 for consistency.
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A warmup: single-step specializations D09-S07(d)

Specializing to single-step methods (s “ 1) yields a transparent family of methods:

un`1 ` ↵1un “ k
`
�0fn`1 ` �1fn

˘
.

(Recall ↵0 “ 1)

For any reasonable notion of consistency (to approximate u1ptnq), we should take ↵1 “ ´1.

With this restriction, then we have

un`1 ´ un “ k
`
�0fn`1 ` �1fn

˘
,

and hence the right hand side should approximate
≥tn`1
tn

fpuprqqdr, requiring �0 ` �1 “ 1 for consistency.

Then our general family of methods is

un`1 “ un ` k
`
�fn`1 ` p1 ´ �qfn

˘
,

specializing to,
– � “ 0: Forward Euler
– � “ 1: Backward Euler
– � “ 1{2: Crank-Nicolson
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The Adams Family D09-S08(a)

There are two major classes of most popular multi-step methods. The first is the family of Adams methods.

For these methods we start with,

uptn`1q “ uptnq `
ª tn`1

tn

fpuprqqdr,

suggesting that we should take ↵0 “ 1, ↵1 “ ´1.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, IV



The Adams Family D09-S08(b)

There are two major classes of most popular multi-step methods. The first is the family of Adams methods.

For these methods we start with,

uptn`1q “ uptnq `
ª tn`1

tn

fpuprqqdr,

suggesting that we should take ↵0 “ 1, ↵1 “ ´1.

The �j are chosen as a quadrature rule to approximate the integral:

ª tn`1

tn

fpuprqqdr « k
sÿ

j“0

�jfn`1´j

Note that we are using points outside the interval of intergration (if s ° 1).
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The Adams Family D09-S08(c)

There are two major classes of most popular multi-step methods. The first is the family of Adams methods.

For these methods we start with,

uptn`1q “ uptnq `
ª tn`1

tn

fpuprqqdr,

suggesting that we should take ↵0 “ 1, ↵1 “ ´1.

The �j are chosen as a quadrature rule to approximate the integral:

ª tn`1

tn

fpuprqqdr « k
sÿ

j“0

�jfn`1´j

Note that we are using points outside the interval of intergration (if s ° 1). Again, the particular type of scheme
depends on whether we want an implicit or an explicit method:

– �0 “ 0 yields explicit methods (one fewer parameter to invest in LTE reduction)
– �0 ‰ 0 yields implicit methods
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Adams-Bashforth Methods D09-S09(a)

The choice of explicit path yields the family of Adams-Bashforth methods.

un`1 ´ un “ k
sÿ

j“1

�jfn`1´j .

The �j coefficients are used to ensure high-order LTE. E.g., two equivalent strategies:
– Expand in Taylor series, match terms by setting �j

– Interpolate a degree-ps ´ 1q polynomial on data at tn`1´s, . . . , tn, integrate the polynomial. The resulting
coefficients multiplying the data are the �j .
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Adams-Bashforth Methods D09-S09(b)

The choice of explicit path yields the family of Adams-Bashforth methods.

un`1 ´ un “ k
sÿ

j“1

�jfn`1´j .

The �j coefficients are used to ensure high-order LTE. E.g., two equivalent strategies:
– Expand in Taylor series, match terms by setting �j

– Interpolate a degree-ps ´ 1q polynomial on data at tn`1´s, . . . , tn, integrate the polynomial. The resulting
coefficients multiplying the data are the �j .

Coefficients for the Adams-Bashforth methods with order=steps:
�1 �2 �3 �4 �5 �6

p “ s “ 1 1

p “ s “ 2
3
2 ´1

p “ s “ 3
23
12 ´ 16

12
5
12

p “ s “ 4
55
24 ´ 59

24
37
24 ´ 9

24

p “ s “ 5
1901
720 ´ 2774

720
2616
720 ´ 1274

720
251
720

p “ s “ 6
4277
1440 ´ 7923

1440
9982
1440 ´ 7298

1440
2877
1440 ´ 475

1440
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Adams-Moulton Methods D09-S10(a)

The choice of implicit path yields the family of Adams-Moulton methods.

un`1 ´ un “ k
sÿ

j“0

�jfn`1´j .

The �j coefficients are used to ensure high-order LTE.
The same strategies as before are usable.

Note that technically we can take s “ 0 here, which yields backward Euler. (Though you’d still call this a 1-step
method.)
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Adams-Moulton Methods D09-S10(b)

The choice of implicit path yields the family of Adams-Moulton methods.

un`1 ´ un “ k
sÿ

j“0

�jfn`1´j .

The �j coefficients are used to ensure high-order LTE.
The same strategies as before are usable.

Note that technically we can take s “ 0 here, which yields backward Euler. (Though you’d still call this a 1-step
method.) Coefficients for the Adams-Moulton methods with order=steps+1:

�0 �1 �2 �3 �4 �5

p ´ 1 “ s “ 1
1
2

1
2

p ´ 1 “ s “ 2
5
12

8
12 ´ 1

12

p ´ 1 “ s “ 3
9
24

19
24 ´ 5

24
1
24

p ´ 1 “ s “ 4
251
720

646
720 ´ 264

720
106
720 ´ 19

720

p ´ 1 “ s “ 5
475
1440

1427
1440 ´ 798

1440
482
1440 ´ 173

1440
27

1440
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Backward Differentiation formulas D09-S11(a)

The Adams family of methods is not particularly robust for stiff problems.

As an alternative, consider the general form:

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

and now instead let us focus effort on setting �j “ 0 for j ° 0, and choosing ↵j to approximate y1ptnq to high order:

sÿ

j“0

↵jun`1´j “ k�0fn`1.

This is the family of (implicit) backward differentiation formulas (BDF) methods.
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Backward Differentiation formulas D09-S11(b)

The Adams family of methods is not particularly robust for stiff problems.

As an alternative, consider the general form:

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

and now instead let us focus effort on setting �j “ 0 for j ° 0, and choosing ↵j to approximate y1ptnq to high order:

sÿ

j“0

↵jun`1´j “ k�0fn`1.

This is the family of (implicit) backward differentiation formulas (BDF) methods. Again, the BDF coefficients are

explicitly computable:

�0 ↵0 ↵1 ↵2 ↵3 ↵4 ↵5 ↵6

p “ s “ 1 1 1 ´1

p “ s “ 2
2
3 1 ´ 4

3
1
3

p “ s “ 3
6
11 1 ´ 18

11
9
11 ´ 2

11

p “ s “ 4
12
25 1 ´ 48

25
36
25 ´ 16

25
3
25

p “ s “ 5
60
137 1 ´ 300

137
300
137 ´ 200

137
75
137 ´ 12

137

p “ s “ 6
60
147 1 ´ 360

147
450
147 ´ 400

147
225
147 ´ 72

147
10
147
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Consistency and order of approximation D09-S12(a)

It’s much easier to compute order conditions for multi-step methods (compared to multi-stage ones).

In particular, to compute the LTE for the scheme,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

we need to compute the residual for the expression

1

k

sÿ

j“0

↵juptn`1´jq ´
sÿ

j“0

�jfptn`1´j ,uptn`1´jqq.
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Consistency and order of approximation D09-S12(b)

It’s much easier to compute order conditions for multi-step methods (compared to multi-stage ones).

In particular, to compute the LTE for the scheme,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

we need to compute the residual for the expression

1

k

sÿ

j“0

↵juptn`1´jq ´
sÿ

j“0

�jfptn`1´j ,uptn`1´jqq.

Noting that u1ptq “ fpt,uptqq, the above expression is equivalent to,

1

k

sÿ

j“0

↵juptn`1´jq ´
sÿ

j“0

�ju
1ptn`1´jq,

and hence we can compute order conditions simply by computing Taylor expansions of u and u1.
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Consistency of multi-step methods, I D09-S13(a)

1

k

sÿ

j“0

↵juptn`1´jq ´
sÿ

j“0

�ju
1ptn`1´jq,

The Op1{kq terms from the above come from Taylor expansions of the ↵j terms, implying that we require,

sÿ

j“0

↵j “ 0.
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Consistency of multi-step methods, I D09-S13(b)

1

k

sÿ

j“0

↵juptn`1´jq ´
sÿ

j“0

�ju
1ptn`1´jq,

The Op1{kq terms from the above come from Taylor expansions of the ↵j terms, implying that we require,

sÿ

j“0

↵j “ 0.

For consistency (LTE vanishing as k Ó 0), we likewise require the Op1q terms to vanish, i.e.,

sÿ

j“0

ps ´ jq↵j ´
sÿ

j“0

�j “ 0.
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Consistency of multi-step methods, I D09-S13(c)

1

k

sÿ

j“0

↵juptn`1´jq ´
sÿ

j“0

�ju
1ptn`1´jq,

The Op1{kq terms from the above come from Taylor expansions of the ↵j terms, implying that we require,

sÿ

j“0

↵j “ 0.

For consistency (LTE vanishing as k Ó 0), we likewise require the Op1q terms to vanish, i.e.,

sÿ

j“0

ps ´ jq↵j ´
sÿ

j“0

�j “ 0.

These two expressions are evaluations of certain characteristic polynomials:

⇢pwq “ ∞s
j“0 ↵jws´j

�pwq “ ∞s
j“0 �jws´j

*
ùñ ⇢p1q “ 0

⇢1p1q “ �p1q
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Consistency of multi-step methods, II D09-S14(a)

LTE “ 1

k

sÿ

j“0

↵juptn`1´jq ´
sÿ

j“0

�ju
1ptn`1´jq,

⇢pwq “
sÿ

j“0

↵jw
s´j

�pwq “
sÿ

j“0

�ws´j

We have shown the following:

Theorem
A multi-step method is consistent if and only if ⇢p1q “ 0 and ⇢1p1q “ �p1q.
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Consistency of multi-step methods, II D09-S14(b)

LTE “ 1

k

sÿ

j“0

↵juptn`1´jq ´
sÿ

j“0

�ju
1ptn`1´jq,

⇢pwq “
sÿ

j“0

↵jw
s´j

�pwq “
sÿ

j“0

�ws´j

We have shown the following:

Theorem
A multi-step method is consistent if and only if ⇢p1q “ 0 and ⇢1p1q “ �p1q.

Of course, to attain more than first-order accuracy, we require more conditions.
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0-Stability of multi-step methods, I D09-S15(a)

The characteristic polynomials are also integral in determining 0-stability:

Theorem
An s-step linear multi-step method is 0-stable if and only if the roots w1, . . . , ws of ⇢pwq all satisfy |wi| § 1, and

any roots satisfying |wi| “ 1 are simple. (Terminologically: “⇢ satisfies the root condition”)

This gives a fairly computable condition to identify 0-stability.
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0-Stability of multi-step methods, I D09-S15(b)

The characteristic polynomials are also integral in determining 0-stability:

Theorem
An s-step linear multi-step method is 0-stable if and only if the roots w1, . . . , ws of ⇢pwq all satisfy |wi| § 1, and

any roots satisfying |wi| “ 1 are simple. (Terminologically: “⇢ satisfies the root condition”)

This gives a fairly computable condition to identify 0-stability.

Why is this related to 0-stability? Recall that the essential message of 0-stability is that

Initial data perturbations of size ✏ lead to numerical solutions with errors C✏ for small enough ✏.

(I.e., the k-asymptotic LTE behavior bounds the actual error in the numerical method up to a constant.)

The above is actually a more abstract version of the definition of 0-stability compared to what we saw in slides D06.
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0-Stability of multi-step methods, I D09-S15(c)

The characteristic polynomials are also integral in determining 0-stability:

Theorem
An s-step linear multi-step method is 0-stable if and only if the roots w1, . . . , ws of ⇢pwq all satisfy |wi| § 1, and

any roots satisfying |wi| “ 1 are simple. (Terminologically: “⇢ satisfies the root condition”)

This gives a fairly computable condition to identify 0-stability.

Why is this related to 0-stability? Recall that the essential message of 0-stability is that

Initial data perturbations of size ✏ lead to numerical solutions with errors C✏ for small enough ✏.

(I.e., the k-asymptotic LTE behavior bounds the actual error in the numerical method up to a constant.)

The above is actually a more abstract version of the definition of 0-stability compared to what we saw in slides D06.

Note: we only require control of perturbations for vanishingly small ✏.

It turns out that while phrased as perturbations to initial data, this is conceptually similar to perturbations of f , and
under an ODE well-posedness result, is equivalent to considering perturbations of f “ 0.

I.e., it’s enough to check controlled perturbations for u1 “ 0
(This is why it’s called 0-stability.)
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0-Stability of multi-step methods, II D09-S16(a)

So if we only need to consider a linear multistep method for u1 “ 0 to account for 0-stability, this means the scheme
reads,

sÿ

j“0

↵jun`1´j “ 0,

say with starting conditions u0 “ ¨ ¨ ¨ “ us´1 “ 0.
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0-Stability of multi-step methods, II D09-S16(b)

So if we only need to consider a linear multistep method for u1 “ 0 to account for 0-stability, this means the scheme
reads,

sÿ

j“0

↵jun`1´j “ 0,

say with starting conditions u0 “ ¨ ¨ ¨ “ us´1 “ 0.

If we replace the initial data of 0’s by perturbations, then the exact solution to the difference equation, assuming
unique roots w1, . . . , ws of ⇢, is,

un „ ✏1w
n
1 ` ¨ ¨ ¨ ` ✏sw

n
s

where ✏1, . . . , ✏s are dependent on the initial data perturbations.
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0-Stability of multi-step methods, II D09-S16(c)

So if we only need to consider a linear multistep method for u1 “ 0 to account for 0-stability, this means the scheme
reads,

sÿ

j“0

↵jun`1´j “ 0,

say with starting conditions u0 “ ¨ ¨ ¨ “ us´1 “ 0.

If we replace the initial data of 0’s by perturbations, then the exact solution to the difference equation, assuming
unique roots w1, . . . , ws of ⇢, is,

un „ ✏1w
n
1 ` ¨ ¨ ¨ ` ✏sw

n
s

where ✏1, . . . , ✏s are dependent on the initial data perturbations.

The exact solution to this problem is un “ 0. As k Ó 0, then n Ò 8. I.e., our perturbed solution is bounded relative
to 0 iff |wj | † 1 for all j.

|wj | “ 1 is allowed for simple roots, but for repeated roots with multiplicity m, then |un| „ nm´1|wj | “ nm´1,
which is unbounded in n for m ° 1.
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0-Stability of multi-step methods, II D09-S16(d)

So if we only need to consider a linear multistep method for u1 “ 0 to account for 0-stability, this means the scheme
reads,

sÿ

j“0

↵jun`1´j “ 0,

say with starting conditions u0 “ ¨ ¨ ¨ “ us´1 “ 0.

If we replace the initial data of 0’s by perturbations, then the exact solution to the difference equation, assuming
unique roots w1, . . . , ws of ⇢, is,

un „ ✏1w
n
1 ` ¨ ¨ ¨ ` ✏sw

n
s

where ✏1, . . . , ✏s are dependent on the initial data perturbations.

The exact solution to this problem is un “ 0. As k Ó 0, then n Ò 8. I.e., our perturbed solution is bounded relative
to 0 iff |wj | † 1 for all j.

|wj | “ 1 is allowed for simple roots, but for repeated roots with multiplicity m, then |un| „ nm´1|wj | “ nm´1,
which is unbounded in n for m ° 1.

Hence, 0-stability is equivalent to the roots of ⇢ lying within the unit circle (and on the boundary for simple roots).
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0-stability examples D09-S17(a)

Example: any one-step (s “ 1) method is 0-stable, since ⇢pwq “ w ´ 1.
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0-stability examples D09-S17(b)

Example: any one-step (s “ 1) method is 0-stable, since ⇢pwq “ w ´ 1.

Example: All Adams- methods are 0-stable, since ⇢pwq “ ws ´ ws´1.
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0-stability examples D09-S17(c)

Example: any one-step (s “ 1) method is 0-stable, since ⇢pwq “ w ´ 1.

Example: All Adams- methods are 0-stable, since ⇢pwq “ ws ´ ws´1.

Example: All BDF methods for s § 6 are 0-stable. Any BDF method with s ° 6 is unstable.
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0-stability examples D09-S17(d)

Example: any one-step (s “ 1) method is 0-stable, since ⇢pwq “ w ´ 1.

Example: All Adams- methods are 0-stable, since ⇢pwq “ ws ´ ws´1.

Example: All BDF methods for s § 6 are 0-stable. Any BDF method with s ° 6 is unstable.

There are reasonable-looking methods that violate 0-stability:

un`1 ` 4un ´ 5un´1 “ k
`
4fn ` 2fn´1

˘
,

and these methods are actually quite unstable.
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Convergence D09-S18(a)

Just like our analysis for simple Euler-type schemes, 0-stability and consistency are convergence.

Theorem (Dahlquist Equivalence Theorem)
Consider an s-step multistep method where the startup values u0, . . . ,us´1 are generated in a consistent way

(uj Ñ up0q as k Ó 0 for j “ 0, . . . , s ´ 1.)

Such a linear multistep method is convergent if and only if it is consistent and 0-stable.

I.e.,:

A linear multistep method is convergent if and only if ⇢p1q “ 0, ⇢1p1q “ �p1q, and ⇢ satisfies the root condition.

(When convergent, a linear multistep method has order of convergence equal to the order p of the LTE.)

Note that 1 is always a root of ⇢ for multistep methods of interest.

Methods for which 1 is the only unity-modulus root are strongly stable. (Otherwise, they are weakly stable.)
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Convergence D09-S18(b)

Just like our analysis for simple Euler-type schemes, 0-stability and consistency are convergence.

Theorem (Dahlquist Equivalence Theorem)
Consider an s-step multistep method where the startup values u0, . . . ,us´1 are generated in a consistent way

(uj Ñ up0q as k Ó 0 for j “ 0, . . . , s ´ 1.)

Such a linear multistep method is convergent if and only if it is consistent and 0-stable.

I.e.,:

A linear multistep method is convergent if and only if ⇢p1q “ 0, ⇢1p1q “ �p1q, and ⇢ satisfies the root condition.

(When convergent, a linear multistep method has order of convergence equal to the order p of the LTE.)

Note that 1 is always a root of ⇢ for multistep methods of interest.

Methods for which 1 is the only unity-modulus root are strongly stable. (Otherwise, they are weakly stable.)
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Absolute stability D09-S19(a)

We have a similar notion of absolute stability for multi-step methods: We require that the iteration,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

produces solutions un that do not grow exponentially in n for the test equation u1 “ �u.
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Absolute stability D09-S19(b)

We have a similar notion of absolute stability for multi-step methods: We require that the iteration,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

produces solutions un that do not grow exponentially in n for the test equation u1 “ �u.

This results in the difference equation,

sÿ

j“0

↵jun`1´j “ k�
sÿ

j“0

�jun`1´j ,

whose characteristic equation is,

⇢pwq “ k��pwq z“�k“ z�pwq.
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Absolute stability D09-S19(c)

We have a similar notion of absolute stability for multi-step methods: We require that the iteration,

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

produces solutions un that do not grow exponentially in n for the test equation u1 “ �u.

This results in the difference equation,

sÿ

j“0

↵jun`1´j “ k�
sÿ

j“0

�jun`1´j ,

whose characteristic equation is,

⇢pwq “ k��pwq z“�k“ z�pwq.

Thus, we say that the region of (absolute) stability for the scheme is the set of z values such that ⇢pwq ´ z�pwq has
roots w1, . . . , ws all satisfying |wj | † 1, with |wj | “ 1 allowed for simple roots. (I.e., z P ROS means ⇢p¨q ´ z�p¨q
satsifies the root condition.)

(Note that 0 P ROS ñ 0-stability.)
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Absolute stability: Adams-Bashforth D09-S20(a)
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Stability region of Adams−Bashforth 3−step method
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Stability region of Adams−Bashforth 4−step method
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Stability region of Adams−Bashforth 5−step method

Figure 7.2. Stability regions for some Adams–Bashforth methods. The shaded
region just to the left of the origin is the region of absolute stability. See Section 7.6.1 for a
discussion of the other loops seen in figures (c) and (d).

if the method is pth order accurate. We can see this in the examples above for one-step
methods, e.g., for Euler’s method !1.z/ D 1 C z D ez C O.z2/. It is this root that is
giving the appropriate behavior U nC1 ! ezU n over a time step. Since this root is on the
unit circle at the origin z D 0, and since jezj < 1 only when Re.z/ < 0, we expect the
principal root to move inside the unit circle for small z with Re.z/ < 0 and outside the
unit circle for small z with Re.z/ > 0. This suggests that if we draw a small circle around
the origin, then the left half of this circle will lie inside the stability region (unless some
other root moves outside, as happens for the midpoint method), while the right half of the
circle will lie outside the stability region. Looking at the stability regions in Figure 7.1
we see that this is indeed true for all the methods except the midpoint method. Moreover,
the higher the order of accuracy in general, the larger a circle around the origin where this
will approximately hold, and so the boundary of the stability region tends to align with the
imaginary axis farther and farther from the origin as the order of the method increases, as
observed in Figures 7.2 and 7.3. (The trapezoidal method is a bit of an anomaly, as its
stability region exactly agrees with that of ez for all z.)

LeVeque 2007, Figure 7.2
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Absolute stability: Adams-Moulton D09-S21(a)
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Stability region of Adams−Moulton 2−step method
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Stability region of Adams−Moulton 3−step method
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Stability region of Adams−Moulton 4−step method
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Stability region of Adams−Moulton 5−step method

Figure 7.3. Stability regions for some Adams–Moulton methods.

See Section 7.6 for a discussion of ways in which stability regions can be determined
and plotted.

7.4 Systems of ordinary differential equations
So far we have examined stability theory only in the context of a scalar differential equa-
tion u0.t/ D f .u.t// for a scalar function u.t/. In this section we will look at how this
stability theory carries over to systems of m differential equations where u.t/ 2 Rm. For
a linear system u0 D Au, where A is an m ! m matrix, the solution can be written as
u.t/ D eAtu.0/ and the behavior is largely governed by the eigenvalues of A. A necessary
condition for stability is that k! be in the stability region for each eigenvalue ! of A. For
general nonlinear systems u0 D f .u/, the theory is more complicated, but a good rule of
thumb is that k! should be in the stability region for each eigenvalue ! of the Jacobian
matrix f 0.u/. This may not be true if the Jacobian is rapidly changing with time, or even
for constant coefficient linear problems in some highly nonnormal cases (see [47] and Sec-
tion 10.12.1 for an example), but most of the time eigenanalysis is surprisingly effective.

LeVeque 2007, Figure 7.3
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Dahlquist barriers D09-S22(a)

There are some somewhat dissapointing results about efficacy of multistep methods:

Theorem (First Dahlquist Barrier)
For an s-step multistep method that is 0-stable:

– An explicit method can have order of accuracy at most p “ s.

– If s is odd, the order of accuracy can be at most p “ s ` 1.

– If s is even, the order of accuracy can be at most p “ s ` 2.

(Note that consistent s-step methods explicitly have 2s ´ 1 degrees of freedom.)

Theorem (Second Dahlquist Barrier)
No A-stable explicit multistep methods exist.

An implicit A-stable multistep method has order of accuracy at most p “ 2.
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Dahlquist barriers D09-S22(b)

There are some somewhat dissapointing results about efficacy of multistep methods:

Theorem (First Dahlquist Barrier)
For an s-step multistep method that is 0-stable:

– An explicit method can have order of accuracy at most p “ s.

– If s is odd, the order of accuracy can be at most p “ s ` 1.

– If s is even, the order of accuracy can be at most p “ s ` 2.

(Note that consistent s-step methods explicitly have 2s ´ 1 degrees of freedom.)

Theorem (Second Dahlquist Barrier)
No A-stable explicit multistep methods exist.

An implicit A-stable multistep method has order of accuracy at most p “ 2.
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Odds and ends for multi-step methods D09-S23(a)

Startup

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

How to start from n “ 0 if s ° 1?

Usually accomplished with Runge-Kutta methods of similar order.
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Odds and ends for multi-step methods D09-S23(b)

Startup

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

How to start from n “ 0 if s ° 1?

Usually accomplished with Runge-Kutta methods of similar order.
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Odds and ends for multi-step methods D09-S23(c)

Startup

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

How to start from n “ 0 if s ° 1?

Usually accomplished with Runge-Kutta methods of similar order.

Predictor-corrector methods

Explicit and implicit methods are frequently used in predictor-corrector frameworks, e.g.,:
– An explicit approximation to un`1 is computed with an Adams-Bashforth method.
– This approximation is used as an emulator for the unknown uptn`1q on the right-hand side of an

Adams-Moulton method.
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Odds and ends for multi-step methods D09-S23(d)

Startup

sÿ

j“0

↵jun`1´j “ k
sÿ

j“0

�jfptn`1´j ,un`1´jq,

How to start from n “ 0 if s ° 1?

Usually accomplished with Runge-Kutta methods of similar order.

Predictor-corrector methods

Explicit and implicit methods are frequently used in predictor-corrector frameworks, e.g.,:
– An explicit approximation to un`1 is computed with an Adams-Bashforth method.
– This approximation is used as an emulator for the unknown uptn`1q on the right-hand side of an

Adams-Moulton method.
Predictor-corrector methods are an example from a more general class of methods called general linear methods,
which encompass both multi-stage and multi-step methods.
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