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Initial value problems

u'(t) = f(t;u), u(0) = uop.

Un ~ u(tn)

&

tn+1
U1 ~ Un +J F(t, u(t))dt

tn
We have previously discussed

— Simple schemes: forward/backward Euler, Trapezoidal /Crank-Nicolson
— Consistency and LTE

— 0-stability and scheme convergence

— absolute/A-stability and consequences

Now we'll delve into more advanced schemes, in particular multi-stage schemes.
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Higher-order schemes

The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for

Trapezoidal.

Recall that our schemes result from discretization (approximation) of an integral:

tn—}—l
w(tns1) = ultn) + f £t u(t))dt
tn—}—nl
U1 ~ Up, +J £t w(t))dt.
tn

Our choices so far were to
— Use a one-point approximation using the left-hand value (forward Euler)
— Use a one-point approximation using the right-hand value (backward Euler)

— Use a two-point Trapezoidal approximation (Crank-Nicolson)
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Higher-order schemes

The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for

Trapezoidal.

Recall that our schemes result from discretization (approximation) of an integral:
tn—l—l

u(tn+1) = w(tn) + J Fft,u(t))dt

tn

tn—}—l
Unt1 X Uy + J f(t,u(t))dt.

tn

In moving foward, we could consider the approximation

tn—}—l d
f F(tu®)dt ~ Y kbjf(tn,j, u(tn,j)), tn,j = tn + kcj,

tn 71=1

for some constants b; and c; and number of points s.
For example, we could determine these constants by enforcing high-degree polynomial interpolation conditions.

TWVZ.Q;A_ ’ C = 0) C27 | , b): {/?_I }Z(‘J/q,
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Higher-order schemes

The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for
Trapezoidal.

Recall that our schemes result from discretization (approximation) of an integral:
tn—}—l

u(tn+1) = w(tn) + J Fft,u(t))dt

tn

tn—}—l
Uni1 X Un +J £t u(t))dt.
tn

In moving foward, we could consider the approximation
tn—}—l d
t —
n 7j=1

for some constants b; and c; and number of points s.
For example, we could determine these constants by enforcing high-degree polynomial interpolation conditions.

The major problem with this approach is that it's unclear what approximation should be used for u at the
intermediate time points ¢,, ;.
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A simple method

To illustrate what we must accomplish, let us consider a simple case.

We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the
interval:

tn~|—1 k
J f(t,’u,(t))dt o kb1f(tn,1,’u,(tn’1)), tn,1 =tn + 5
tn

l.e., we have chosen ¢; = 1/2, and b; must be determined.
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A simple method

To illustrate what we must accomplish, let us consider a simple case.

We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the
interval:

tn~|—1 k
J f(t,’u,(t))dt o kb1f(tn,1,’u,(tn’1)), tn,1 =tn + 5
tn

l.e., we have chosen ¢; = 1/2, and b; must be determined.

Note, however, that consistency of the approximation requires b; = 1.

Therefore, the (only) major question we have to answer is how we compute w(ty, 1) from ws,.
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A simple method

To illustrate what we must accomplish, let us consider a simple case.

We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the
interval:

tn~|—1 k
J f(t,’u,(t))dt o kb1f(tn,1,’u,(tn’1)), tn,1 =tn + 5
tn
l.e., we have chosen ¢; = 1/2, and b; must be determined.
Note, however, that consistency of the approximation requires b; = 1.

Therefore, the (only) major question we have to answer is how we compute w(ty, 1) from un,.

A straightforward idea is to approximate w(t,, 1) with, say, Euler's method:

k
u(tn + k/2) x Uy == un + §f(tn,'u,n)

Un+1 = Unp + kf(tn + k/2, Ul).
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Order of consistency, |

k
This idea seems fruitful, but there is a conceptual problem: Note that,

D?{n = f(tn + k/2,u(ty, + k/2)) + O(K?)

ult,)

leading to an order-2 scheme.
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Order of consistency,

DMl )~ s, ule,) =olk)

k
u(tn + k/2) x U1 = upn + Ef(tn,un)

Un4+1 = Un + kf(tn + k/2, Ul).
DT, = F(tn + k/2, u(ty + k/2)) + O(k?)

The problem is that we are approximating with U1, which is only first-order accurate. Neverheless, one can show
that this approximation is sufficient to retain an overall second-order LTE:

Fltn +k/2,U1) ~ F(tn + /2, u(tn + k/2))
+ (U1 — u(tn +1/2)) 2—£(tn +k/2, u(tn + k/2))
Ftn + k/2,u(tn + k/2)) = f(tn + k/2,U1)
+ (w(tn +1/2) — Uy) Z—Z(tn + /2, u(tn + k/2))

= f(tn + k/2,U1) + O(K?).
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The midpoint method

k
wu(tn + k/2) x Uy == upn + §f(tn,un)
Up4+1 = Up + kf(tn + k/2, Ul).

Thus, the procedure above is actually second-order accurate, and is our first example of an explicit second-order
method.

This scheme is called the (explicit) midpoint method.
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The midpoint method

k
wu(tn + k/2) x Uy == upn + §f(tn,un)
Up4+1 = Up + kf(tn + k/2, Ul).

Thus, the procedure above is actually second-order accurate, and is our first example of an explicit second-order
method.

This scheme is called the (explicit) midpoint method.
The above shows how we might hope to generate higher-order schemes using higher-order quadrature.

Some happy coincidences occurred above, in particular making computations somewhat simple. In general, things are
more technical.
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Multi-stage methods

A generalization of our previous approach is the quadrature approximation:

tn—}—l
f F(t,u(t))dt ~ Zkbgf nirti(tng)), tnj = tn + kej,

tn

This leads to the following scheme:

s
’u,(tn,j) N Uj = Unp + k Z aj’gf(tn,g, Ug) tn,j — tn + k?Cj,
£=1

S
Unt1 = Un +k ) bjf(tnj,Uj),
=1

where the a; ¢, bj, and c; coefficients must be identified.
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Multi-stage methods
A generalization of our previous approach is the quadrature approximation:
tn—}—l S
| peuendt ~ Y kb £t g uta, ) bnj = tn + kej,
t —
n 7j=1
This leads to the following scheme:

s
u(tn,j) N Uj = Unp + k Z aj’gf(tn,g, Ug) tn,j — tn + k?Cj,
(=1

S
Unt1 = Un +k ) bjf(tnj,Uj),
j=1

where the a; ¢, bj, and c; coefficients must be identified.

The above is the general form for a multi-stage scheme with s intermediate stages. It is more commonly known as a
Runge-Kutta method.

— If aj ¢ # 0 for any £ > j, then the procedure above is implicit. Otherwise it is explicit.
— If the overall scheme has order p LTE, it is typically not necessary that U, correspond to an order p LTE.

— For s = 3, deriving and matching appropriate conditions can be quite cumbersome.
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Consistency for order conditions

To see why things get hairy, first note that,

' = f<tn,u<tn)> =f =1
u' = —f ft ;i I _. f(l)

(1)
m_ G oe(1) _ p(Q) of o = (2)
u dtf =f = Tu f
And by direct Taylor expansion, we have

k
Dt u(ty) =u' + §UH + -

_ @ Fewy
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Consistency for order conditions

To see why things get hairy, first note that,

w = f(tn, u(tn)) = f = 1

d of (
n_ = p_ o) = (1)
u dtf i+ (9uu f
d of)
o — af-(l) fgl) + ‘gu u' f(2)

And by direct Taylor expansion, we have
k
DVu(ty) =o' + Eu” + e
k
2
Therefore, attaining an order p LTE amounts to enforcing,

> k kp—1

2, bifltn Uj) = FO 4 JFO 4 = f0 4 O(RP).
— p:
7j=1

This then involves Taylor expansions for f(t, ;,U;). ®
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Order conditions
We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve
order p:

1 2 3 4 5 6 7 8
1 2 4 8 17 37 115 200

P
# of conditions

And we can compare this to the number of free parameters for an s-stage method:

1 2 3 4 5 6 7 8
1 3 6 10 15 21 28 36

s
# of parameters
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Order conditions

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve
order p:

1 2 3 4 5 6 7 8
1 2 4 8 17 37 115 200

P
# of conditions

And we can compare this to the number of free parameters for an s-stage method:

1 2 3 4 5 6 7 8
1 3 6 10 15 21 28 36

s
# of parameters

This suggests that there is an order barrier, i.e., an order at which we must invest a superlinear number of stages
relative to the order p. In fact, this is a theorem:

Theorem
There is no pth order Runge-Kutta method with s = p stages if p > 5.
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Order conditions

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve
order p:

1 2 3 4 5 6 7 8
1 2 4 8 17 37 115 200

P
# of conditions

And we can compare this to the number of free parameters for an s-stage method:

1 2 3 4 5 6 7 8
1 3 6 10 15 21 28 36

s
# of parameters

This suggests that there is an order barrier, i.e., an order at which we must invest a superlinear number of stages
relative to the order p. In fact, this is a theorem:

Theorem
There is no pth order Runge-Kutta method with s = p stages if p > 5.

However, the situation is not so dire as the tables above suggest:

Stages s |1 2 3 4 5 6 7 8 9 10
Achievable RKorder p |1 2 3 4 4 5 6 6 7 7

In particular, this suggests that s = p = 4 is an optimal tradeoff point.
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Butcher tableaus

tn,j =tn + k’Cj,

S
U(tn) *Uj =un+k Y ajof(tne Uy
=1

s
Un+1 = Un + k Z bjf(tn,j, Uj),
Jj=1

In order to compactly communicate RK schemes, the Butcher tableau is the standard tool: the parameters a; 4, b;,
and c; are collected and arranged as follows:

aer.
t,\ = {,,'fc,l( c1 | a1 ai2 -+ Qls gV
' — 2‘_@/
' c2 | a21  a22 azs &— (,{2 = U4 /(“ {mch/< [,IJ)
) . . . . . <! !
1[,,]'[. {,‘¢ Cle _Cs | Gs1 as2  --- Qs
b1 by -  bs
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Some familiar schemes

Using tableau notation we can rehash some schemes we've previously seen:

0O/0 O
00 1|1 1L 1
2 2
1 1 —
2 2

Forward Euler Backward Euler Trapezoidal/CN
A el 0,70 BE: ¢=]
U= upe k2 24, s, et ek U ) wlir= U = U, kL
= Uy Upay = Uy * [( “Ugfnw, M)
£
Vny = u'\"k \‘2_,% ’C(ﬁ’i.{*CJ k! u) ) U= U/\*k‘”ﬂd—l/ uml()
T Upt ¢ ’C({-"‘/ u]): u, ¢ l( £(€4\ Mn)
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U= u,

U= up+ i () féf[{w U, )
u"NI: U"J %'[[‘LV:. ”\ )qL kz“[‘&m, {/L) /
I

Uiz s S0 ) —éf/gm,, Uy, )

9



More examples

There is a one-parameter family of two-stage second-order methods:

0
c c 0
1

2c 2

O

for c € (0,1]:
— ¢ = 1: explicit trapezoid method

— ¢ = 1/2: explicit midpoint method
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More examples

There is a one-parameter family of two-stage second-order methods:

0 0 0
c c 0
T T
| 1—5 3
for c € (0,1]:
— ¢ = 1: explicit trapezoid method
— ¢ = 1/2: explicit midpoint method e - X
e 3 X
And here is the classical fourth-order RK scheme: o /,X
o/lo o0 o0 o el
1 1 /
3|z 0 00 up X
510 5 0 0 : : ,
110 O 1 O
T 1 1 1 £k {
5 3 3 & b Bt e
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Stability, convergence

Multi-stage (RK) methods are 0-stable, hence we obtain convergence commensurate with the LTE.
(Recall that this does not imply practical utility of error estimates)

A more interesting investigation involves the region of stability for these methods.

Note that this investigation makes sense since for A-stability we consider a scalar problem with,
f(t,u) = Au,

and so intermediate stages have the form,

S S
Uj=un+k Z ajof(tn,e,Up) =un + 2 Z a; Uy,
£=1 £=1
where z = \k. Therefore, the update is,

S
Un4+1 = Un + K Z bjf(tn + kc;j,Uj) = un + 2z
j=1 j=1

b;Uj,

S

which is a polynomial in z if the method is explicit.
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Regions of stability

For some “standard” explicit RK methods of orders 1 — 4, stability regions are as follows:

Stability regions in the complex z-plane

3 T T T B |

Im(z)
=)

-1F

-2t

Re(z)

Figure: ROS for RK methods of order 1, 2, 3, 4. Darkest region for p = 1, lightest for p = 4. Ascher and Petzold 1998, Figure
4.4

Note that, by this measure of stability, higher order methods are more stable than lower order ones.
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Practical RK methods: error estimation

In “production”-level simulations, a single time-stepping method is rarely used in isolation: methods are used in
combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:
— uy: a less accurate approximation (typically = lower order)

— Uy a more accurate approximation (typically = higher order)

A. Narayan (U. Utah — Math/SCI) Math 6620: ODE solvers, 111



Practical RK methods: error estimation

In “production”-level simulations, a single time-stepping method is rarely used in isolation: methods are used in

combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:
— uy: a less accurate approximation (typically = lower order)
— Uy a more accurate approximation (typically = higher order)

If @, is (much) more accurate than w,, then,
lenll = llun —u(tn)| ~ |un —anl,

and the latter is computable.

A simplistic idea: use two multi-stage methods, say u, is RK3 and u,, is RK4,

The downside: this essentially requires (a little more than) twice the work.
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Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

tn,j =tn + k’Cj,

S
U;=up+k Z ajof(tn,e,Up)
=1

s
Un+1 = Un + k Z bjf(tn,ja UJ)a
i=1

with local truncation error LTE,, ~ kP.
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Embedded multi-stage methods
Embedded methods allow us to construct more efficient error estimation procedures.
Consider a multi-stage method,

tn,j = tn + kcj,

S
Uj=un+k Z ajef(tn,e;Ur)
e=1

s
Un+1 = Un + k Z bjf(tn,ja UJ)a
i=1

with local truncation error LTE,, ~ kP.

Suppose, somehow, we can identify other values of b; for a different approximation:

'Jl J

’ﬁn+1:un+kzgj%7£(tn' uf>
j=1

so that the LTE for @, obeys LTE,, ~ kP*1.
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Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

tn,j =tn + ij,

U;j=up+k Z ajof(tn,e,Up)
=1

s
Un+1 = Up + k Z bjf(tn,j,Uj),
j=1

with local truncation error LTE,, ~ kP.

Suppose, somehow, we can identify other values of b; for a different approximation:

S
ﬁn+1 = un + k Z bjUj,
j=1

so that the LTE for u,, obeys LTE,, ~ kPt1. Since k « 1, we can reasonbly expect that 2, is much more
accurate than u,,.
RK methods, with two pairs of b; coefficients corresponding to different orders, are called embedded methods.
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An embedded method example

The following is a particularly well-known embedded method of order 4/5:

0
1 1
5 5
3 3 9
10 40 40
4 44 _56 32
5 45 1
8 | 19372 25360 64448 212
9 6561 2187 6561 729
1 9017 355 46732 49 _ 5103
3168 33 5247 176 18656
1 35 0 500 125 2187 11
384 1113 192 6784 84
5179 0 7571 393 — 92097 187 1
57600 16695 640 339200 2100 40
35 0 500 125 2187 11 0
384 1113 192 6784 84

This is the Dormand-Prince 4(5) method.

Note that this has more stages (7) than a corresponding non-embedded order-5 RK method (6).
Nevertheless, this extra stage is typically worth the effort.
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Embedded methods and adaptive time-stepping

With an embedded method, say of order p, we can attempt to certify error tolerances:

len| ~ un —un| ~ O(KP)

This implies that to achieve ||e, | ~ €01, then we should choose a new time step k satisfying,

k)" N
m |[wn — Un| ~ €ol-

This furnishes a precise, computable strategy with an embedded method for adaptively choosing k = At.
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Embedded methods and adaptive time-stepping

With an embedded method, say of order p, we can attempt to certify error tolerances:

len| ~ un —un| ~ O(KP)

This implies that to achieve ||e, | ~ €01, then we should choose a new time step k satisfying,

k)" N
m |[wn — Un| ~ €ol-

This furnishes a precise, computable strategy with an embedded method for adaptively choosing k = At.

This strategy is actually what is used in many popular suites.
For example, the following are implementations of a Dormand-Prince 4(5) embedded method with adaptive

time-stepping:
— Matlab’s ode45 command
— SciPy’s integrate.ode command via the integrate.ode.set_integrator(’dopri5’) option

— Julia’s solve(..., DP5()) command from DifferentialEquations. jl
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Multi-stage odds and ends

There are numerous concepts in multi-stage methods we haven't discussed:
— dense output
— singly/diagonally implicit RK (S/DIRK), low-storage RK (LSRK), ...
— stiff problems and order reduction
— Gauss/-Radau/-Lobatto implicit RK methods

— error estimation/embedding for stiff problems
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