
Math 6630: Analysis of Numerical Methods, II
Solvers for initial value problems, Part III

See Ascher and Petzold 1998, Chapters 1-5

Akil Narayan1

1
Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute

University of Utah

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Initial value problems

D00-S02(a)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

We have previously discussed
– Simple schemes: forward/backward Euler, Trapezoidal/Crank-Nicolson
– Consistency and LTE
– 0-stability and scheme convergence
– absolute/A-stability and consequences

Now we’ll delve into more advanced schemes, in particular multi-stage schemes.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Higher-order schemes

D00-S03(a)

The schemes we’ve seen previously are relatively low order: first order for Euler-type, and second order for
Trapezoidal.

Recall that our schemes result from discretization (approximation) of an integral:

uptn`1q “ uptnq `
ª tn`1

tn

fpt,uptqqdt

un`1 « un `
ª tn`1

tn

fpt,uptqqdt.

Our choices so far were to
– Use a one-point approximation using the left-hand value (forward Euler)
– Use a one-point approximation using the right-hand value (backward Euler)
– Use a two-point Trapezoidal approximation (Crank-Nicolson)

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Higher-order schemes

D00-S03(b)

The schemes we’ve seen previously are relatively low order: first order for Euler-type, and second order for
Trapezoidal.

Recall that our schemes result from discretization (approximation) of an integral:

uptn`1q “ uptnq `
ª tn`1

tn

fpt,uptqqdt

un`1 « un `
ª tn`1

tn

fpt,uptqqdt.

In moving foward, we could consider the approximation
ª tn`1

tn

fpt,uptqqdt «
sÿ

j“1

kbjfptn,j ,uptn,jqq, tn,j “ tn ` kcj ,

for some constants bj and cj and number of points s.
For example, we could determine these constants by enforcing high-degree polynomial interpolation conditions.

The major problem with this approach is that it’s unclear what approximation should be used for u at the
intermediate time points tn,j .

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Higher-order schemes

D00-S03(c)

The schemes we’ve seen previously are relatively low order: first order for Euler-type, and second order for
Trapezoidal.

Recall that our schemes result from discretization (approximation) of an integral:

uptn`1q “ uptnq `
ª tn`1

tn

fpt,uptqqdt

un`1 « un `
ª tn`1

tn

fpt,uptqqdt.

In moving foward, we could consider the approximation
ª tn`1

tn

fpt,uptqqdt «
sÿ

j“1

kbjfptn,j ,uptn,jqq, tn,j “ tn ` kcj ,

for some constants bj and cj and number of points s.
For example, we could determine these constants by enforcing high-degree polynomial interpolation conditions.

The major problem with this approach is that it’s unclear what approximation should be used for u at the
intermediate time points tn,j .

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

A simple method

D00-S04(a)

To illustrate what we must accomplish, let us consider a simple case.

We’ll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the
interval:

ª tn`1

tn

fpt,uptqqdt « kb1fptn,1,uptn,1qq, tn,1 “ tn ` k

2
.

I.e., we have chosen c1 “ 1{2, and bj must be determined.

Note, however, that consistency of the approximation requires b1 “ 1.

Therefore, the (only) major question we have to answer is how we compute uptn,1q from un.

A straightforward idea is to approximate uptn,1q with, say, Euler’s method:

uptn ` k{2q « U1 :“ un ` k

2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

A simple method

D00-S04(b)

To illustrate what we must accomplish, let us consider a simple case.

We’ll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the
interval:

ª tn`1

tn

fpt,uptqqdt « kb1fptn,1,uptn,1qq, tn,1 “ tn ` k

2
.

I.e., we have chosen c1 “ 1{2, and bj must be determined.

Note, however, that consistency of the approximation requires b1 “ 1.

Therefore, the (only) major question we have to answer is how we compute uptn,1q from un.

A straightforward idea is to approximate uptn,1q with, say, Euler’s method:

uptn ` k{2q « U1 :“ un ` k

2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

A simple method

D00-S04(c)

To illustrate what we must accomplish, let us consider a simple case.

We’ll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the
interval:

ª tn`1

tn

fpt,uptqqdt « kb1fptn,1,uptn,1qq, tn,1 “ tn ` k

2
.

I.e., we have chosen c1 “ 1{2, and bj must be determined.

Note, however, that consistency of the approximation requires b1 “ 1.

Therefore, the (only) major question we have to answer is how we compute uptn,1q from un.

A straightforward idea is to approximate uptn,1q with, say, Euler’s method:

uptn ` k{2q « U1 :“ un ` k

2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Order of consistency, I

D00-S05(a)

uptn ` k{2q « U1 :“ un ` k

2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.

This idea seems fruitful, but there is a conceptual problem: Note that,

D`un “ fptn ` k{2,uptn ` k{2qq ` Opk2q

leading to an order-2 scheme.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Order of consistency, II

D00-S06(a)

uptn ` k{2q « U1 :“ un ` k

2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.
D`un “ fptn ` k{2,uptn ` k{2qq ` Opk2q

The problem is that we are approximating with U1, which is only first-order accurate. Neverheless, one can show
that this approximation is sufficient to retain an overall second-order LTE:

fptn ` k{2,U1q « fptn ` k{2,uptn ` k{2qq

` pU1 ´ uptn ` 1{2qq Bf
Bu ptn ` k{2,uptn ` k{2qq

fptn ` k{2,uptn ` k{2qq “ fptn ` k{2,U1q

` puptn ` 1{2q ´ U1q Bf
Bu ptn ` k{2,uptn ` k{2qq

“ fptn ` k{2,U1q ` Opk2q.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

The midpoint method

D00-S07(a)

uptn ` k{2q « U1 :“ un ` k

2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.

Thus, the procedure above is actually second-order accurate, and is our first example of an explicit second-order
method.

This scheme is called the (explicit) midpoint method.

The above shows how we might hope to generate higher-order schemes using higher-order quadrature.

Some happy coincidences occurred above, in particular making computations somewhat simple. In general, things are
more technical.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

The midpoint method

D00-S07(b)

uptn ` k{2q « U1 :“ un ` k

2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.

Thus, the procedure above is actually second-order accurate, and is our first example of an explicit second-order
method.

This scheme is called the (explicit) midpoint method.

The above shows how we might hope to generate higher-order schemes using higher-order quadrature.

Some happy coincidences occurred above, in particular making computations somewhat simple. In general, things are
more technical.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Multi-stage methods

D00-S08(a)

A generalization of our previous approach is the quadrature approximation:
ª tn`1

tn

fpt,uptqqdt «
sÿ

j“1

kbjfptn,j ,uptn,jqq, tn,j “ tn ` kcj ,

This leads to the following scheme:

uptn,jq « Uj “ un ` k
sÿ

`“1

aj,`fptn,`,U`q tn,j “ tn ` kcj ,

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,Ujq,

where the aj,`, bj , and cj coefficients must be identified.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Multi-stage methods

D00-S08(b)

A generalization of our previous approach is the quadrature approximation:
ª tn`1

tn

fpt,uptqqdt «
sÿ

j“1

kbjfptn,j ,uptn,jqq, tn,j “ tn ` kcj ,

This leads to the following scheme:

uptn,jq « Uj “ un ` k
sÿ

`“1

aj,`fptn,`,U`q tn,j “ tn ` kcj ,

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,Ujq,

where the aj,`, bj , and cj coefficients must be identified.

The above is the general form for a multi-stage scheme with s intermediate stages. It is more commonly known as a
Runge-Kutta method.

– If aj,` ‰ 0 for any ` ° j, then the procedure above is implicit. Otherwise it is explicit.
– If the overall scheme has order p LTE, it is typically not necessary that Uj correspond to an order p LTE.
– For s • 3, deriving and matching appropriate conditions can be quite cumbersome.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Consistency for order conditions

D00-S09(a)

To see why things get hairy, first note that,

u1 “ fptn,uptnqq “ f “: f p0q

u2 “ d

dt
f “ f t ` Bf

Buu1 “: f p1q

u3 “ d

dt
f p1q “ f p1q

t ` Bf p1q

Bu u1 “: f p2q

...

And by direct Taylor expansion, we have

D`uptnq “ u1 ` k

2
u2 ` ¨ ¨ ¨ .

“ f p0q ` k

2
f p1q ` ¨ ¨ ¨ .

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Consistency for order conditions

D00-S09(b)

To see why things get hairy, first note that,

u1 “ fptn,uptnqq “ f “: f p0q

u2 “ d

dt
f “ f t ` Bf

Buu1 “: f p1q

u3 “ d

dt
f p1q “ f p1q

t ` Bf p1q

Bu u1 “: f p2q

...

And by direct Taylor expansion, we have

D`uptnq “ u1 ` k

2
u2 ` ¨ ¨ ¨ .

“ f p0q ` k

2
f p1q ` ¨ ¨ ¨ .

Therefore, attaining an order p LTE amounts to enforcing,
sÿ

j“1

bjfptn,j ,Ujq “ f p0q ` k

2
f p1q ` ¨ ¨ ¨ ` kp´1

p!
f pp´1q ` Opkpq.

This then involves Taylor expansions for fptn,j ,Ujq. /

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Order conditions

D00-S10(a)

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve
order p:

p 1 2 3 4 5 6 7 8
of conditions 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an s-stage method:

s 1 2 3 4 5 6 7 8
of parameters 1 3 6 10 15 21 28 36

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Order conditions

D00-S10(b)

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve
order p:

p 1 2 3 4 5 6 7 8
of conditions 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an s-stage method:

s 1 2 3 4 5 6 7 8
of parameters 1 3 6 10 15 21 28 36

This suggests that there is an order barrier, i.e., an order at which we must invest a superlinear number of stages
relative to the order p. In fact, this is a theorem:

Theorem
There is no pth order Runge-Kutta method with s “ p stages if p • 5.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Order conditions

D00-S10(c)

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve
order p:

p 1 2 3 4 5 6 7 8
of conditions 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an s-stage method:

s 1 2 3 4 5 6 7 8
of parameters 1 3 6 10 15 21 28 36

This suggests that there is an order barrier, i.e., an order at which we must invest a superlinear number of stages
relative to the order p. In fact, this is a theorem:

Theorem
There is no pth order Runge-Kutta method with s “ p stages if p • 5.

However, the situation is not so dire as the tables above suggest:

Stages s 1 2 3 4 5 6 7 8 9 10
Achievable RK order p 1 2 3 4 4 5 6 6 7 7

In particular, this suggests that s “ p “ 4 is an optimal tradeoff point.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Butcher tableaus

D00-S11(a)

tn,j “ tn ` kcj ,

uptn,jq « Uj “ un ` k
sÿ

`“1

aj,`fptn,`,U`q

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,Ujq,

In order to compactly communicate RK schemes, the Butcher tableau is the standard tool: the parameters aj,`, bj ,
and cj are collected and arranged as follows:

c1 a11 a12 ¨ ¨ ¨ a1s
c2 a21 a22 ¨ ¨ ¨ a2s
...

...
...

. . .
...

cs as1 as2 ¨ ¨ ¨ ass
b1 b2 ¨ ¨ ¨ bs

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Some familiar schemes

D00-S12(a)

Using tableau notation we can rehash some schemes we’ve previously seen:

0 0
1

1 1
1

0 0 0
1 1

2
1
2

1
2

1
2

Forward Euler Backward Euler Trapezoidal/CN

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

More examples

D00-S13(a)

There is a one-parameter family of two-stage second-order methods:

0 0 0
c c 0

1 ´ 1
2c

1
2c

for c P p0, 1s:
– c “ 1: explicit trapezoid method
– c “ 1{2: explicit midpoint method

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

More examples

D00-S13(b)

There is a one-parameter family of two-stage second-order methods:

0 0 0
c c 0

1 ´ 1
2c

1
2c

for c P p0, 1s:
– c “ 1: explicit trapezoid method
– c “ 1{2: explicit midpoint method

And here is the classical fourth-order RK scheme:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

1
3

1
3

1
6

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Stability, convergence

D00-S14(a)

Multi-stage (RK) methods are 0-stable, hence we obtain convergence commensurate with the LTE.
(Recall that this does not imply practical utility of error estimates)

A more interesting investigation involves the region of stability for these methods.

Note that this investigation makes sense since for A-stability we consider a scalar problem with,

fpt, uq “ �u,

and so intermediate stages have the form,

Uj “ un ` k
sÿ

`“1

aj,`fptn,`, U`q “ un ` z
sÿ

`“1

aj,`U`,

where z “ �k. Therefore, the update is,

un`1 “ un ` k
sÿ

j“1

bjfptn ` kcj , Ujq “ un ` z
sÿ

j“1

bjUj ,

which is a polynomial in z if the method is explicit.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Regions of stability

D00-S15(a)

For some “standard” explicit RK methods of orders 1 ´ 4, stability regions are as follows:Chapter 4: One-Step Methods 89

Figure 4.4: Stability regions for p-stage explicit Runge-Kutta methods of
order p, p = 1,2,3,4. The inner circle corresponds to forward Euler, p = 1.
The larger p is, the larger the stability region. Note the "ear lobes" of the
fourth-order method protruding into the right half-plane.

For explicit Runge-Kutta methods R(z) is a polynomial in z = h\ given,
e.g., by the expression whose magnitude appears in (4.19). Thus, to find
the boundary of the region of absolute stability, we find the roots z(0) of

for a sequence of values. Starting with 6 = 0, for which z = 0, we
repeatedly increase 0 by a small increment, each time applying a root finder
to find the corresponding z, starting from z of the previous 9 as a first
guess,11 until the stability boundary curve returns to the origin.

It is also possible to compute the region of absolute stability via a brute
force approach. To do this, we first form a grid over a large part of the
complex plane including the origin. Then at each mesh point Zij, if |.R(2ij)| <
1, we mark Zij as being inside the stability region.

Finally, we note that no explicit Runge-Kutta method can have an un-
bounded region of absolute stability. This is because all Runge-Kutta meth-

This is an elementary example of a continuation method.

Figure: ROS for RK methods of order 1, 2, 3, 4. Darkest region for p “ 1, lightest for p “ 4. Ascher and Petzold 1998, Figure

4.4

Note that, by this measure of stability, higher order methods are more stable than lower order ones.
A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Practical RK methods: error estimation

D00-S16(a)

In “production”-level simulations, a single time-stepping method is rarely used in isolation: methods are used in
combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:
– un: a less accurate approximation (typically ñ lower order)
– run: a more accurate approximation (typically ñ higher order)

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Practical RK methods: error estimation

D00-S16(b)

In “production”-level simulations, a single time-stepping method is rarely used in isolation: methods are used in
combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:
– un: a less accurate approximation (typically ñ lower order)
– run: a more accurate approximation (typically ñ higher order)

If run is (much) more accurate than un, then,

}en} “ }un ´ uptnq} « }un ´ run},

and the latter is computable.

A simplistic idea: use two multi-stage methods, say un is RK3 and run is RK4.

The downside: this essentially requires (a little more than) twice the work.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Embedded multi-stage methods

D00-S17(a)

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

tn,j “ tn ` kcj ,

Uj “ un ` k
sÿ

`“1

aj,`fptn,`,U`q

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,Ujq,

with local truncation error LTEn „ kp.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Embedded multi-stage methods

D00-S17(b)

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

tn,j “ tn ` kcj ,

Uj “ un ` k
sÿ

`“1

aj,`fptn,`,U`q

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,Ujq,

with local truncation error LTEn „ kp.

Suppose, somehow, we can identify other values of bj for a different approximation:

run`1 “ un ` k
sÿ

j“1

rbjUj ,

so that the LTE for run obeys LTEn „ kp`1.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Embedded multi-stage methods

D00-S17(c)

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

tn,j “ tn ` kcj ,

Uj “ un ` k
sÿ

`“1

aj,`fptn,`,U`q

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,Ujq,

with local truncation error LTEn „ kp.

Suppose, somehow, we can identify other values of bj for a different approximation:

run`1 “ un ` k
sÿ

j“1

rbjUj ,

so that the LTE for run obeys LTEn „ kp`1. Since k ! 1, we can reasonbly expect that run is much more
accurate than un.
RK methods, with two pairs of bj coefficients corresponding to different orders, are called embedded methods.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

An embedded method example

D00-S18(a)

The following is a particularly well-known embedded method of order 4/5:

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 ´ 56

15
32
9

8
9

19372
6561 ´ 25360

2187
64448
6561 ´ 212

729

1 9017
3168 ´ 355

33
46732
5247

49
176 ´ 5103

18656

1 35
384 0 500

1113
125
192 ´ 2187

6784
11
84

5179
57600 0 7571

16695
393
640 ´ 92097

339200
187
2100

1
40

35
384 0 500

1113
125
192 ´ 2187

6784
11
84 0

This is the Dormand-Prince 4(5) method.

Note that this has more stages (7) than a corresponding non-embedded order-5 RK method (6).
Nevertheless, this extra stage is typically worth the effort.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Embedded methods and adaptive time-stepping

D00-S19(a)

With an embedded method, say of order p, we can attempt to certify error tolerances:

}en} « }un ´ run} „ Opkpq

This implies that to achieve }en} „ ✏tol, then we should choose a new time step pk satisfying,
˜

pk
k

¸p

}un ´ run} « ✏tol.

This furnishes a precise, computable strategy with an embedded method for adaptively choosing k “ �t.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Embedded methods and adaptive time-stepping

D00-S19(b)

With an embedded method, say of order p, we can attempt to certify error tolerances:

}en} « }un ´ run} „ Opkpq

This implies that to achieve }en} „ ✏tol, then we should choose a new time step pk satisfying,
˜

pk
k

¸p

}un ´ run} « ✏tol.

This furnishes a precise, computable strategy with an embedded method for adaptively choosing k “ �t.

This strategy is actually what is used in many popular suites.
For example, the following are implementations of a Dormand-Prince 4(5) embedded method with adaptive
time-stepping:

– Matlab’s ode45 command
– SciPy’s integrate.ode command via the integrate.ode.set_integrator(’dopri5’) option
– Julia’s solve(..., DP5()) command from DifferentialEquations.jl

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

Multi-stage odds and ends

D00-S20(a)

There are numerous concepts in multi-stage methods we haven’t discussed:
– dense output
– singly/diagonally implicit RK (S/DIRK), low-storage RK (LSRK), ...
– stiff problems and order reduction
– Gauss/-Radau/-Lobatto implicit RK methods
– error estimation/embedding for stiff problems

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

References I

D00-S21(a)

Ascher, Uri M. and Linda R. Petzold (1998). Computer Methods for Ordinary Differential Equations and

Differential-Algebraic Equations. SIAM. ISBN: 978-1-61197-139-2.

Butcher, J. C. (2006). “General Linear Methods”. In: Acta Numerica 15, pp. 157–256. ISSN: 1474-0508,
0962-4929. DOI: 10.1017/S0962492906220014.

Dormand, J. R. and P. J. Prince (1980). “A Family of Embedded Runge-Kutta Formulae”. In: Journal of

Computational and Applied Mathematics 6.1, pp. 19–26. ISSN: 0377-0427. DOI:
10.1016/0771-050X(80)90013-3.

LeVeque, Randall J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations:

Steady-State and Time-Dependent Problems. SIAM. ISBN: 978-0-89871-783-9.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, III

https://doi.org/10.1017/S0962492906220014
https://doi.org/10.1016/0771-050X(80)90013-3

