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Initial value problems D07-S02(a)

u'(t) = f(t;u), u(0) = uop.
Un ~ u(tn)
tn+1
Un4+1 X Up + f f(t,u(t))dt
tn
The forward Euler discretization is:

This is an explicit scheme.
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Initial value problems

u'(t) = f(t;u),

Un ~ u(tn)

tn—i—l
Un4+1 X Wy + f F(t,u(t))dt
t

n

The forward Euler discretization is:

D u, = Fns Up+1 =un +kf,,,

This is an explicit scheme.

D07-502(b)

u(0) = ug.

k = At.

We've seen that this method
— Is consistent: The LTE is O(k)

— Is O-stable: There is some C' > 0 such that for all sufficiently small k&,

ne[N]

Rpu(ty) = DY u(ty) — f(tn, u(ty))

max en] < C (Heon + max HRnu(tn)H> ,
ne[N]

A. Narayan (U. Utah — Math/SCI)

Math 6620: ODE solvers, 11



Initial value problems D07-S02(c)

u'(t) = f(t;u), u(0) = uo.
Un ~ u(tn)
tnt1
Un4+1 X Up + L Ff(t,u(t))dt
The forward Euler discretization is:
DYuy, = f,,, Up+1 = un + kf,, k = At.

This is an explicit scheme.

Pairing these facts with the result,
Consistency + 0-stability = Convergence

we conclude that Forward Euler is first-order convergent.

There is a constant C such that for all sufficiently small k&,

max |un — w(tn)| < Ck.
ne[N]

One minor detail is that via analysis, C ~ el'T.
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Initial value problems D07-S02(d)

u'(t) = f(t;u), u(0) = uop.

Un ~ u(tn)

tn+1
U1 ~ Un +J F(t, u(t))dt

The forward Euler discretization is:

D u, = I Un+1 =Un + kFf,,, k = At.

n?

This is an explicit scheme.

max |un, — u(ty)| < Ck, C ~ elT
ne[N|

This is fine in principle, but as a practical tool this bound can be somewhat useless.

Part of the technical reason why this bound is not sharper is that we ask for a certain notion of stability for all k
sufficiently small.

A. Narayan (U. Utah — Math/SCI) Math 6620: ODE solvers, 11



Towards new notions of stability D07-S03(a)

To explore potential alternatives for stability, consider the (very simple!) IVP:
u'(t) = du(t), u(0) = uog,

for some given constants ug and A\. We allow X\ to be complex valued, A € C.
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Towards new notions of stability D07-S03(b)

To explore potential alternatives for stability, consider the (very simple!) IVP:
u'(t) = du(t), u(0) = uog,

for some given constants ug and A\. We allow X\ to be complex valued, A € C.

The value of X is indicative of what we expect a scheme should do.

u(t) = up exp(At) = uget? coswt + iuget? sin wt, A= [+ iw.

— If o> 0, then u(t) ~ e#t, growing to infinity
— If u =0, then u(t) ~ 1, having oscillatory behavior
— If 4 < 0, then u(t) ~ e~ |, decaying to zero.
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Towards new notions of stability D07-S03(c)

To explore potential alternatives for stability, consider the (very simple!) IVP:
u'(t) = du(t), u(0) = uog,

for some given constants ug and A\. We allow X\ to be complex valued, A € C.

The value of X is indicative of what we expect a scheme should do.

u(t) = up exp(At) = uget? coswt + iuget? sin wt, A= [+ iw.

— If o> 0, then u(t) ~ e#t, growing to infinity
— If u =0, then u(t) ~ 1, having oscillatory behavior
— If 4 < 0, then u(t) ~ e~ |, decaying to zero.

This last situation is of particular interest since we would reasonably expect a stable scheme to satisfy the condition,

[unt1] < unl.
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Step sizes attaining stability

o' (t) = du(t), u(0) = uo,
To impose this type of (informal) stability, let’'s consider forward Euler:

D07-S04(a)

Note that conceptually both A and & should be allowed to vary, so we'll combine them into a single (complex)

constant z = \k.

u/lh: (,{,\{,’L’(/U

lu | 5 [u, ] 2= (141} £
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Step sizes attaining stability D07-S04(b)

o' (t) = du(t), u(0) = uo,
To impose this type of (informal) stability, let’'s consider forward Euler:

Note that conceptually both A and & should be allowed to vary, so we'll combine them into a single (complex)
constant z = \k.

Then the condition |un4+1| < |un| is attained if,
[9(2)] < 1, ¢(z) =1+ z, z = M\k.
The function ¢(z) is called the amplification factor for the scheme.
¢ ) 40} [¢ = bty
[zl ¢ [Tedekler k= pesy,

I(h!(/) b hw |41
(Hf(/ﬂz Fil2 4
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Step sizes attaining stability D07-S04(c)

o' (t) = du(t), u(0) = uo,
To impose this type of (informal) stability, let’'s consider forward Euler:

Note that conceptually both A and & should be allowed to vary, so we'll combine them into a single (complex)
constant z = \k.

Then the condition |un4+1| < |un| is attained if,
[9(2)] < 1, d(2) =1+ z, z = \k.
The function ¢(z) is called the amplification factor for the scheme.

We can write this in terms of k:

2R

E< ———.
A2

In particular, if X is real (and negative), then this requires k < 2/|A|, which is somewhat reasonable.
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Stiffness D07-S05(a)

This particular example with forward Euler reveals a qualitative concept that is quite useful.

Suppose we try to solve,
u = \u, u(0) = 1, R <0,

over the interval ¢t € [0, 1] using Forward Euler.

Our consistency (accuracy) realizes error ~ k (with a small constant). In particular, say, kK ~ 0.1 seemingly suffices
for accuracy.
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Stiffness D07-S05(b)

This particular example with forward Euler reveals a qualitative concept that is quite useful.

Suppose we try to solve,
u = \u, u(0) = 1, R <0,

over the interval ¢t € [0, 1] using Forward Euler.

Our consistency (accuracy) realizes error ~ k (with a small constant). In particular, say, kK ~ 0.1 seemingly suffices
for accuracy.

Our absolute stability requirement is that k < 1/|\|, which is far smaller than what accuracy suggests is required.

Such problems (IVP’s), where the stability criterion (say for forward Euler) is much stricter than the corresponding
accuracy criterion, are called stiff problems.
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Stiffness D07-505(c)

This particular example with forward Euler reveals a qualitative concept that is quite useful.

Suppose we try to solve,
u = \u, u(0) = 1, R <0,

over the interval ¢t € [0, 1] using Forward Euler.

Our consistency (accuracy) realizes error ~ k (with a small constant). In particular, say, kK ~ 0.1 seemingly suffices
for accuracy.

Our absolute stability requirement is that k < 1/|\|, which is far smaller than what accuracy suggests is required.

Such problems (IVP’s), where the stability criterion (say for forward Euler) is much stricter than the corresponding
accuracy criterion, are called stiff problems.

Loosely speaking, over the interval t € [0, 1], the problem above is stiff if R\ « —1.
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Absolute and A-stability D07-S06(a)

The previous analysis, however simple, is actually extraordinarily useful in more complicated scenarios, and so
warrants its own name.

Definition
The notion of absolute stability is the requirement |un+1| < |un| applied to ODE problem u/(t) = Au(t) using a
time step k.

The set of values of z = Ak in the complex plane attaining |un+1| < |un| is called the region of stability (ROS) for
the scheme.

The region of stability is a property of the overall scheme, not independently of the time step k or of the value of \.

FE: (=2l4]
2=kX
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Absolute and A-stability D07-S06(b)

The previous analysis, however simple, is actually extraordinarily useful in more complicated scenarios, and so
warrants its own name.

Definition

The notion of absolute stability is the requirement |un+1| < |un| applied to ODE problem u/(t) = Au(t) using a
time step k.

The set of values of z = Ak in the complex plane attaining |un+1| < |un| is called the region of stability (ROS) for
the scheme.

The region of stability is a property of the overall scheme, not independently of the time step k or of the value of \.

Using the concept of absolute stability, there is a stronger notion of stability:

Definition

If the ROS of a numerical scheme contains the entire closed left half-plane in C, then the scheme is A-stable.

FE wt A-chable
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Regions of stability D07-S07(a)

We can plot the region of stability for the methods we've described so far: (;_/‘\/

Forward Euler Backward Euler Trapézoidal

-3 2 1 0 1 1 0 1 2 3
LeVeque 2007, Figure 7.1
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Example D07-S08(a)

This absolute stability idea actually surfaces in practice. Consider a simple harmonic oscillator:

(v )= (2 0) ()

which has oscillating solutions, u, v ~ sin(wt), cos(wt), and hence do not grow in time.
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Langtangen and Linge 2017, Figure 1.7
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Implicit methods D07-S09(a)

This notion of stability motivates why implicit methods are useful:

Although both backward Euler and Crank-Nicolson involve the inversion of a (generally) nonlinear system, they are
both A-stable, i.e., absolutely stable for any k > 0 for any X\ with negative real part.
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Implicit methods D07-S09(b)

This notion of stability motivates why implicit methods are useful:

Although both backward Euler and Crank-Nicolson involve the inversion of a (generally) nonlinear system, they are
both A-stable, i.e., absolutely stable for any k > 0 for any X\ with negative real part.

Generally, explicit methods are

+ Easy to implement, computationally efficient

— Can suffer from instability for large timesteps (\@g‘f]\/ﬁ C]Lj()\/lj
Generally, implicit methods are

— More difficult to implement, more computationally expensive

+ Are typically (much) more stable than explicit counterparts
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Linear systems, | D07-S10(a)

The utility of stability regions can be seen by considering an ODE system:
u'(t) = Au, u(0) = ug € RM.

What time step restriction should we impose to maintain A-stability?
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Linear systems, | D07-S10(b)

The utility of stability regions can be seen by considering an ODE system:
/ _ _ M
u'(t) = Au, u(0) = up € R™.
What time step restriction should we impose to maintain A-stability?
If we assume A is diagonalizable,
A=VAV~1
where A is a diagonal matrix containing the eigenvalues A\1,..., A\ps of A, then we have,

w=V 1ty — w(t) =Aw.
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Linear systems, Il D07-S11(a)

w:=V 1lu — w'(t)=Aw.

Since the system for w is diagonal, it is an uncoupled set of M scalar IVP's, and hence a reasonable notion of
absolute stability here is,

X ¥
X
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Linear systems, Il D07-S11(b)

w:=V 1lu — w'(t)=Aw.

Since the system for w is diagonal, it is an uncoupled set of M scalar IVP's, and hence a reasonable notion of
absolute stability here is,

Thus, we could say that that a particular scheme for solving 4/ = Aw satisfies the notion of absolute stability if the
step size k is small enough to satisfy,

kA(A) € ROS
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Linear systems, Il D07-S11(c)

w:=V 1lu — w(t)=Aw.

Since the system for w is diagonal, it is an uncoupled set of M scalar IVP's, and hence a reasonable notion of
absolute stability here is,

Thus, we could say that that a particular scheme for solving 4/ = Aw satisfies the notion of absolute stability if the
step size k is small enough to satisfy,

kA(A) € ROS

This is particularly useful since it relates stability to the spectrum of A.
E.g., linear IVP's whose spectrum for A extends very far away from the origin will likely require a rather small time
step.
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Absolute stability for nonlinear IVP's D07-S12(a)

Absolute stability as we've defined it does not apply for nonlinear systems directly, but typically one can get a sense
of stability via linearization.

For the general IVP,
’Ll,/(t) = f(t,’u,), U(O) = uo,
a version of the problem above linearized at t = t,, is,

W) = 2 (b, ultn)
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Absolute stability for nonlinear IVP's D07-S12(b)

Absolute stability as we've defined it does not apply for nonlinear systems directly, but typically one can get a sense
of stability via linearization.

For the general IVP,
’Ll,/(t) = f(t,’u,), U(O) = uo,
a version of the problem above linearized at t = t,, is,

W) = 2 (b, ultn)

Therefore, a qualitative condition for stability at the next time step is that the step size k is small enough so that,

kA (% (tn,u(tn))) < ROS

(In practice, only g—i (tn,wy) is computable.)
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