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Initial value problems D07-S02(a)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

The forward Euler discretization is:

D`un “ fn, un`1 “ un ` kfn, k “ �t.

This is an explicit scheme.
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Initial value problems D07-S02(b)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

The forward Euler discretization is:

D`un “ fn, un`1 “ un ` kfn, k “ �t.

This is an explicit scheme.

We’ve seen that this method
– Is consistent: The LTE is Opkq
– Is 0-stable: There is some C ° 0 such that for all sufficiently small k,

max
nPrNs

}en} § C

ˆ
}e0} ` max

nPrNs
}Rnuptnq}

˙
,

Rnuptnq :“ D`uptnq ´ fptn,uptnqq
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Initial value problems D07-S02(c)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

The forward Euler discretization is:

D`un “ fn, un`1 “ un ` kfn, k “ �t.

This is an explicit scheme.

Pairing these facts with the result,

Consistency ` 0-stability ùñ Convergence

we conclude that Forward Euler is first-order convergent.

There is a constant C such that for all sufficiently small k,

max
nPrNs

}un ´ uptnq} § Ck.

One minor detail is that via analysis, C „ eLT .
A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, II



Initial value problems D07-S02(d)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

The forward Euler discretization is:

D`un “ fn, un`1 “ un ` kfn, k “ �t.

This is an explicit scheme.

max
nPrNs

}un ´ uptnq} § Ck, C „ eLT

This is fine in principle, but as a practical tool this bound can be somewhat useless.

Part of the technical reason why this bound is not sharper is that we ask for a certain notion of stability for all k
sufficiently small.
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Towards new notions of stability D07-S03(a)

To explore potential alternatives for stability, consider the (very simple!) IVP:

u1ptq “ �uptq, up0q “ u0,

for some given constants u0 and �. We allow � to be complex valued, � P .

The value of � is indicative of what we expect a scheme should do.

uptq “ u0 expp�tq “ u0e
µt cos!t ` iu0e

µt sin!t, � “ µ ` i!.

– If µ ° 0, then uptq „ eµt, growing to infinity
– If µ “ 0, then uptq „ 1, having oscillatory behavior
– If µ † 0, then uptq „ e´|µ|t, decaying to zero.

This last situation is of particular interest since we would reasonably expect a stable scheme to satisfy the condition,

|un`1| § |un|.
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Towards new notions of stability D07-S03(b)

To explore potential alternatives for stability, consider the (very simple!) IVP:

u1ptq “ �uptq, up0q “ u0,

for some given constants u0 and �. We allow � to be complex valued, � P .

The value of � is indicative of what we expect a scheme should do.

uptq “ u0 expp�tq “ u0e
µt cos!t ` iu0e

µt sin!t, � “ µ ` i!.

– If µ ° 0, then uptq „ eµt, growing to infinity
– If µ “ 0, then uptq „ 1, having oscillatory behavior
– If µ † 0, then uptq „ e´|µ|t, decaying to zero.

This last situation is of particular interest since we would reasonably expect a stable scheme to satisfy the condition,

|un`1| § |un|.
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Towards new notions of stability D07-S03(c)

To explore potential alternatives for stability, consider the (very simple!) IVP:

u1ptq “ �uptq, up0q “ u0,

for some given constants u0 and �. We allow � to be complex valued, � P .

The value of � is indicative of what we expect a scheme should do.

uptq “ u0 expp�tq “ u0e
µt cos!t ` iu0e

µt sin!t, � “ µ ` i!.

– If µ ° 0, then uptq „ eµt, growing to infinity
– If µ “ 0, then uptq „ 1, having oscillatory behavior
– If µ † 0, then uptq „ e´|µ|t, decaying to zero.

This last situation is of particular interest since we would reasonably expect a stable scheme to satisfy the condition,

|un`1| § |un|.
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Step sizes attaining stability D07-S04(a)

u1ptq “ �uptq, up0q “ u0,

To impose this type of (informal) stability, let’s consider forward Euler:

un`1 “ un ` k�un.

Note that conceptually both � and k should be allowed to vary, so we’ll combine them into a single (complex)
constant z “ �k.

Then the condition |un`1| § |un| is attained if,

|�pzq| § 1, �pzq “ 1 ` z, z “ �k.

The function �pzq is called the amplification factor for the scheme.

We can write this in terms of k:

k § ´2<�

|�|2 .

In particular, if � is real (and negative), then this requires k § 2{|�|, which is somewhat reasonable.
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Step sizes attaining stability D07-S04(b)

u1ptq “ �uptq, up0q “ u0,

To impose this type of (informal) stability, let’s consider forward Euler:

un`1 “ un ` k�un.

Note that conceptually both � and k should be allowed to vary, so we’ll combine them into a single (complex)
constant z “ �k.

Then the condition |un`1| § |un| is attained if,

|�pzq| § 1, �pzq “ 1 ` z, z “ �k.

The function �pzq is called the amplification factor for the scheme.

We can write this in terms of k:

k § ´2<�

|�|2 .

In particular, if � is real (and negative), then this requires k § 2{|�|, which is somewhat reasonable.
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Step sizes attaining stability D07-S04(c)

u1ptq “ �uptq, up0q “ u0,

To impose this type of (informal) stability, let’s consider forward Euler:

un`1 “ un ` k�un.

Note that conceptually both � and k should be allowed to vary, so we’ll combine them into a single (complex)
constant z “ �k.

Then the condition |un`1| § |un| is attained if,

|�pzq| § 1, �pzq “ 1 ` z, z “ �k.

The function �pzq is called the amplification factor for the scheme.

We can write this in terms of k:

k § ´2<�

|�|2 .

In particular, if � is real (and negative), then this requires k § 2{|�|, which is somewhat reasonable.
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Stiffness D07-S05(a)

This particular example with forward Euler reveals a qualitative concept that is quite useful.

Suppose we try to solve,

u1 “ �u, up0q “ 1, <� † 0,

over the interval t P r0, 1s using Forward Euler.

Our consistency (accuracy) realizes error „ k (with a small constant). In particular, say, k „ 0.1 seemingly suffices
for accuracy.

Our absolute stability requirement is that k À 1{|�|, which is far smaller than what accuracy suggests is required.

Such problems (IVP’s), where the stability criterion (say for forward Euler) is much stricter than the corresponding
accuracy criterion, are called stiff problems.

Loosely speaking, over the interval t P r0, 1s, the problem above is stiff if <� ! ´1.
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Stiffness D07-S05(b)

This particular example with forward Euler reveals a qualitative concept that is quite useful.

Suppose we try to solve,

u1 “ �u, up0q “ 1, <� † 0,

over the interval t P r0, 1s using Forward Euler.

Our consistency (accuracy) realizes error „ k (with a small constant). In particular, say, k „ 0.1 seemingly suffices
for accuracy.

Our absolute stability requirement is that k À 1{|�|, which is far smaller than what accuracy suggests is required.

Such problems (IVP’s), where the stability criterion (say for forward Euler) is much stricter than the corresponding
accuracy criterion, are called stiff problems.

Loosely speaking, over the interval t P r0, 1s, the problem above is stiff if <� ! ´1.
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Stiffness D07-S05(c)

This particular example with forward Euler reveals a qualitative concept that is quite useful.

Suppose we try to solve,

u1 “ �u, up0q “ 1, <� † 0,

over the interval t P r0, 1s using Forward Euler.

Our consistency (accuracy) realizes error „ k (with a small constant). In particular, say, k „ 0.1 seemingly suffices
for accuracy.

Our absolute stability requirement is that k À 1{|�|, which is far smaller than what accuracy suggests is required.

Such problems (IVP’s), where the stability criterion (say for forward Euler) is much stricter than the corresponding
accuracy criterion, are called stiff problems.

Loosely speaking, over the interval t P r0, 1s, the problem above is stiff if <� ! ´1.
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Absolute and A-stability D07-S06(a)

The previous analysis, however simple, is actually extraordinarily useful in more complicated scenarios, and so
warrants its own name.

Definition
The notion of absolute stability is the requirement |un`1| § |un| applied to ODE problem u1ptq “ �uptq using a
time step k.

The set of values of z “ �k in the complex plane attaining |un`1| § |un| is called the region of stability (ROS) for
the scheme.

The region of stability is a property of the overall scheme, not independently of the time step k or of the value of �.

Using the concept of absolute stability, there is a stronger notion of stability:

Definition
If the ROS of a numerical scheme contains the entire closed left half-plane in , then the scheme is A-stable.
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Absolute and A-stability D07-S06(b)

The previous analysis, however simple, is actually extraordinarily useful in more complicated scenarios, and so
warrants its own name.

Definition
The notion of absolute stability is the requirement |un`1| § |un| applied to ODE problem u1ptq “ �uptq using a
time step k.

The set of values of z “ �k in the complex plane attaining |un`1| § |un| is called the region of stability (ROS) for
the scheme.

The region of stability is a property of the overall scheme, not independently of the time step k or of the value of �.

Using the concept of absolute stability, there is a stronger notion of stability:

Definition
If the ROS of a numerical scheme contains the entire closed left half-plane in , then the scheme is A-stable.
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Regions of stability D07-S07(a)

We can plot the region of stability for the methods we’ve described so far:
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152 Chapter 7. Absolute Stability for Ordinary Differential Equations

and we say that this method is absolutely stable when j1Ck!j ! 1; otherwise it is unstable.
Note that there are two parameters k and !, but only their product z " k! matters. The
method is stable whenever #2 ! z ! 0, and we say that the interval of absolute stability
for Euler’s method is Œ#2; 0".

It is more common to speak of the region of absolute stability as a region in the
complex z plane, allowing the possibility that ! is complex (of course the time step k
should be real and positive). The region of absolute stability (or simply the stability region)
for Euler’s method is the disk of radius 1 centered at the point#1, since within this disk we
have j1 C k!j ! 1 (see Figure 7.1a). Allowing ! to be complex comes from the fact that in
practice we are usually solving a system of ordinary differential equations (ODEs). In the
linear case it is the eigenvalues of the coefficient matrix that are important in determining
stability. In the nonlinear case we typically linearize (see Section 7.4.3) and consider the
eigenvalues of the Jacobian matrix. Hence ! represents a typical eigenvalue and these
may be complex even if the matrix is real. For some problems, looking at the eigenvalues
is not sufficient (see Section 10.12.1, for example), but eigenanalysis is generally very
revealing.
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Figure 7.1. Stability regions for (a) Euler, (b) backward Euler, (c) trapezoidal,
and (d) midpoint (a segment on imaginary axis).
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LeVeque 2007, Figure 7.1
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Example D07-S08(a)

This absolute stability idea actually surfaces in practice. Consider a simple harmonic oscillator:
ˆ

u1ptq
v1ptq

˙
“

ˆ
0 1

´!2 0

˙ ˆ
uptq
vptq

˙

which has oscillating solutions, u, v „ sinp!tq, cosp!tq, and hence do not grow in time.
1.5 Alternative Schemes Based on 1st-Order Equations 33

Fig. 1.7 Comparison of classical schemes in the phase plane for two time step values

Fig. 1.8 Comparison of solution curves for classical schemes

Figure 1.7 show the results. Note that Odespy applies the label MidpointImplicit
for what we have specified as CrankNicolson in the code (CrankNicolson is
just a synonym for class MidpointImplicit in the Odespy code). The Forward
Euler scheme in Fig. 1.7 has a pronounced spiral curve, pointing to the fact that the
amplitude steadily grows, which is also evident in Fig. 1.8. The Backward Euler
scheme has a similar feature, except that the spriral goes inward and the amplitude
is significantly damped. The changing amplitude and the spiral form decreases with
decreasing time step. The Crank-Nicolson scheme looks much more accurate. In
fact, these plots tell that the Forward and Backward Euler schemes are not suitable
for solving our ODEs with oscillating solutions.

1.5.5 Runge-Kutta Methods

We may run two other popular standard methods for first-order ODEs, the 2nd- and
4th-order Runge-Kutta methods, to see how they perform. Figures 1.9 and 1.10
show the solutions with larger !t values than what was used in the previous two
plots.

Langtangen and Linge 2017, Figure 1.7
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Implicit methods D07-S09(a)

This notion of stability motivates why implicit methods are useful:

Although both backward Euler and Crank-Nicolson involve the inversion of a (generally) nonlinear system, they are
both A-stable, i.e., absolutely stable for any k ° 0 for any � with negative real part.

Generally, explicit methods are
+ Easy to implement, computationally efficient
– Can suffer from instability for large timesteps

Generally, implicit methods are
– More difficult to implement, more computationally expensive
+ Are typically (much) more stable than explicit counterparts
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Implicit methods D07-S09(b)

This notion of stability motivates why implicit methods are useful:

Although both backward Euler and Crank-Nicolson involve the inversion of a (generally) nonlinear system, they are
both A-stable, i.e., absolutely stable for any k ° 0 for any � with negative real part.

Generally, explicit methods are
+ Easy to implement, computationally efficient
– Can suffer from instability for large timesteps

Generally, implicit methods are
– More difficult to implement, more computationally expensive
+ Are typically (much) more stable than explicit counterparts
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Linear systems, I D07-S10(a)

The utility of stability regions can be seen by considering an ODE system:

u1ptq “ Au, up0q “ u0 P M .

What time step restriction should we impose to maintain A-stability?

If we assume A is diagonalizable,

A “ V ⇤V ´1,

where ⇤ is a diagonal matrix containing the eigenvalues �1, . . . ,�M of A, then we have,

w :“ V ´1u ùñ w1ptq “ ⇤w.
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Linear systems, I D07-S10(b)

The utility of stability regions can be seen by considering an ODE system:

u1ptq “ Au, up0q “ u0 P M .

What time step restriction should we impose to maintain A-stability?

If we assume A is diagonalizable,

A “ V ⇤V ´1,

where ⇤ is a diagonal matrix containing the eigenvalues �1, . . . ,�M of A, then we have,

w :“ V ´1u ùñ w1ptq “ ⇤w.
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Linear systems, II D07-S11(a)

w :“ V ´1u ùñ w1ptq “ ⇤w.

Since the system for w is diagonal, it is an uncoupled set of M scalar IVP’s, and hence a reasonable notion of
absolute stability here is,

|pwn`1qm| § |pwnqm| ùñ k�m P ROS

Thus, we could say that that a particular scheme for solving u1 “ Au satisfies the notion of absolute stability if the
step size k is small enough to satisfy,

k�pAq Ä ROS

This is particularly useful since it relates stability to the spectrum of A.
E.g., linear IVP’s whose spectrum for A extends very far away from the origin will likely require a rather small time
step.
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Linear systems, II D07-S11(b)

w :“ V ´1u ùñ w1ptq “ ⇤w.

Since the system for w is diagonal, it is an uncoupled set of M scalar IVP’s, and hence a reasonable notion of
absolute stability here is,

|pwn`1qm| § |pwnqm| ùñ k�m P ROS

Thus, we could say that that a particular scheme for solving u1 “ Au satisfies the notion of absolute stability if the
step size k is small enough to satisfy,

k�pAq Ä ROS

This is particularly useful since it relates stability to the spectrum of A.
E.g., linear IVP’s whose spectrum for A extends very far away from the origin will likely require a rather small time
step.
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Linear systems, II D07-S11(c)

w :“ V ´1u ùñ w1ptq “ ⇤w.

Since the system for w is diagonal, it is an uncoupled set of M scalar IVP’s, and hence a reasonable notion of
absolute stability here is,

|pwn`1qm| § |pwnqm| ùñ k�m P ROS

Thus, we could say that that a particular scheme for solving u1 “ Au satisfies the notion of absolute stability if the
step size k is small enough to satisfy,

k�pAq Ä ROS

This is particularly useful since it relates stability to the spectrum of A.
E.g., linear IVP’s whose spectrum for A extends very far away from the origin will likely require a rather small time
step.
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Absolute stability for nonlinear IVP’s D07-S12(a)

Absolute stability as we’ve defined it does not apply for nonlinear systems directly, but typically one can get a sense
of stability via linearization.

For the general IVP,

u1ptq “ fpt,uq, up0q “ u0,

a version of the problem above linearized at t “ tn is,

u1ptq “ Bf
Bu ptn,uptnqqu,

Therefore, a qualitative condition for stability at the next time step is that the step size k is small enough so that,

k�

ˆ Bf
Bu ptn,uptnqq

˙
Ä ROS

(In practice, only Bf
Bu ptn,unq is computable.)
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Absolute stability for nonlinear IVP’s D07-S12(b)

Absolute stability as we’ve defined it does not apply for nonlinear systems directly, but typically one can get a sense
of stability via linearization.

For the general IVP,

u1ptq “ fpt,uq, up0q “ u0,

a version of the problem above linearized at t “ tn is,

u1ptq “ Bf
Bu ptn,uptnqqu,

Therefore, a qualitative condition for stability at the next time step is that the step size k is small enough so that,

k�

ˆ Bf
Bu ptn,uptnqq

˙
Ä ROS

(In practice, only Bf
Bu ptn,unq is computable.)
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