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Initial value problems D06-S02(a)

We’ve discussed how to solve simple stationary problems.

Before delving into time-dependent problems, we’ll spend some time discussing numerical methods for solving initial
value problems.

Our focal problem will be the ordinary differential equation:

u1ptq “ fpt,uq, up0q “ u0,

where the initial condition u0 is given.

The assumption is that we seek to compute uptq for t P r0, T s.
(Or possibly only at the endpoint, or at some discrete values in the interval)

The function f can be nonlinear and/or the ODE can be autonomous, and higher-order ODE’s can be written as
first-order ODE’s with an expanded state vector.
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Initial value problems D06-S02(b)

We’ve discussed how to solve simple stationary problems.

Before delving into time-dependent problems, we’ll spend some time discussing numerical methods for solving initial
value problems.

Our focal problem will be the ordinary differential equation:

u1ptq “ fpt,uq, up0q “ u0,

where the initial condition u0 is given.

The assumption is that we seek to compute uptq for t P r0, T s.
(Or possibly only at the endpoint, or at some discrete values in the interval)

The function f can be nonlinear and/or the ODE can be autonomous, and higher-order ODE’s can be written as
first-order ODE’s with an expanded state vector.
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Method of Lines D06-S03(a)

Initial value problems appear ubiquitously in numerical solutions of PDE’s, typically through method of lines (MOL)
discretizations.

In MOL discretizations, one discretizes all but one variable, and the one remaining variable is typically time:

ut “ uxx ` uux ›Ñ u1ptq “ D2u ` u ˝ pDuq “: fpuq.

Above, D is some matrix discretization of the differentiation operation, and ˝ is the Hadamard (elementwise)
product.

I.e., first we have discretized in x (physical) space, but left t (time) alone.

MOL discretizations are not the only way to develop PDE solvers, but they appear so frequently that understanding
how to solve the resulting IVP’s is quite important.

In these slides we’ll focus exclusively on numerically solving the IVP, assuming f is given.
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Method of Lines D06-S03(b)

Initial value problems appear ubiquitously in numerical solutions of PDE’s, typically through method of lines (MOL)
discretizations.

In MOL discretizations, one discretizes all but one variable, and the one remaining variable is typically time:

ut “ uxx ` uux ›Ñ u1ptq “ D2u ` u ˝ pDuq “: fpuq.

Above, D is some matrix discretization of the differentiation operation, and ˝ is the Hadamard (elementwise)
product.

I.e., first we have discretized in x (physical) space, but left t (time) alone.

MOL discretizations are not the only way to develop PDE solvers, but they appear so frequently that understanding
how to solve the resulting IVP’s is quite important.

In these slides we’ll focus exclusively on numerically solving the IVP, assuming f is given.
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Well-posed IVP’s D06-S04(a)

Well-posedness for IVP’s is a quite well-studied topic.

Theorem (Picard-Lindelöf)
Suppose that f : ˆ M Ñ M is continuous in some open ball around p0,u0q P ˆ M , and further is

Lipschitz continuous in the u variable in this ball. Consider the initial value problem,

u1ptq “ fpt;uq, up0q “ u0.

Then there exists some ✏ ° 0 such that there is a unique solution uptq to the above problem for t P r´✏, ✏s.

In the proof of this theorem, one constructs u such that,

uptq “ up0q `
ª t

0
fpt;uptqqdt.

This formula is the starting point for many numerical schemes.
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Well-posed IVP’s D06-S04(b)

Well-posedness for IVP’s is a quite well-studied topic.

Theorem (Picard-Lindelöf)
Suppose that f : ˆ M Ñ M is continuous in some open ball around p0,u0q P ˆ M , and further is

Lipschitz continuous in the u variable in this ball. Consider the initial value problem,

u1ptq “ fpt;uq, up0q “ u0.

Then there exists some ✏ ° 0 such that there is a unique solution uptq to the above problem for t P r´✏, ✏s.

In the proof of this theorem, one constructs u such that,

uptq “ up0q `
ª t

0
fpt;uptqqdt.

This formula is the starting point for many numerical schemes.
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Temporal discretization D06-S05(a)

u1ptq “ fpt;uq, up0q “ u0.

An easy strategy is to discretize time with equispaced values up to a terminal time T :

t0 :“ 0, tn :“ nk “ n�t, T “ Nk.

I.e., we either choose �t “ k, or N .

The exact solution satisfies

uptn`1q “ uptnq `
ª tn`1

tn

fpt,uptqqdt,

and therefore we seek to compute numerical approximations un « uptnq that would satisfy,

un`1 « un `
ª tn`1

tn

fpt,uptqqdt
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Temporal discretization D06-S05(b)

u1ptq “ fpt;uq, up0q “ u0.

An easy strategy is to discretize time with equispaced values up to a terminal time T :

t0 :“ 0, tn :“ nk “ n�t, T “ Nk.

I.e., we either choose �t “ k, or N .

The exact solution satisfies

uptn`1q “ uptnq `
ª tn`1

tn

fpt,uptqqdt,

and therefore we seek to compute numerical approximations un « uptnq that would satisfy,

un`1 « un `
ª tn`1

tn

fpt,uptqqdt
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Some basic schemes D06-S06(a)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

A great many schemes result from discretization of the integral via quadrature.
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Some basic schemes D06-S06(b)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

A great many schemes result from discretization of the integral via quadrature.

The Forward Euler method uses the quadrature rule,
ª tn`1

tn

fpt,uptqqdt « ptn`1 ´ tnqfpt,uptqq
ˇ̌
t“tn

« kfptn,unq “: kfn,

leading to the scheme,

un`1 “ un ` kfn.

This scheme is explicit.
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Some basic schemes D06-S06(c)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

A great many schemes result from discretization of the integral via quadrature.

The Backward Euler method uses the quadrature rule,
ª tn`1

tn

fpt,uptqqdt « ptn`1 ´ tnqfpt,uptqq
ˇ̌
t“tn`1

« kfptn`1,un`1q “: kfn`1,

leading to the scheme,

un`1 “ un ` kfn`1.

This scheme is implicit.
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Some basic schemes D06-S06(d)

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

A great many schemes result from discretization of the integral via quadrature.

The Crank-Nicolson method uses the Trapezoid rule approximation,
ª tn`1

tn

fpt,uptqqdt « ptn`1 ´ tnq
2

´
fpt,uptqq

ˇ̌
t“tn

` fpt,uptqq
ˇ̌
t“tn`1

¯

“ k

2
pfn ` fn`1q.

leading to the scheme,

un`1 “ un ` k

2

`
fn ` fn`1

˘
.

This scheme is also implict.
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Basics of convergence D06-S07(a)

We might reasonbly define convergence as the following:

Definition
A scheme for an ODE is convergent to order p if

max
nPrNs

}en} “ Opkpq, en :“ uptnq ´ un.

for some choice of norm } ¨ } on M -dimensional vectors.

As you might expect, we cannot tackle convergence directly without some setup involving consistency and stability.
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Basics of convergence D06-S07(b)

We might reasonbly define convergence as the following:

Definition
A scheme for an ODE is convergent to order p if

max
nPrNs

}en} “ Opkpq, en :“ uptnq ´ un.

for some choice of norm } ¨ } on M -dimensional vectors.

As you might expect, we cannot tackle convergence directly without some setup involving consistency and stability.

A. Narayan (U. Utah – Math/SCI) Math 6620: ODE solvers, I



Local truncation error D06-S08(a)

For ODE IVP’s, our local truncation error is again defined as the residual of the scheme when the exact solution is
inserted, and is consistent if k Ó 0 causes the LTE to vanish.

To fix details, let’s consider forward Euler:

un`1 “ un ` kfn.

First, we rewrite the scheme to match the units of the original ODE:

un`1 ´ un

k
“ fn ›Ñ D`un ´ fn “ 0,

where we have introduced the difference operator D`un :“ 1{k pun`1 ´ unq.
Note the superscript for `.

After a short computation, we conclude:

LTEn :“
››D`uptnq ´ fptn,uptnqq

›› » k}u2ptnq} “ Ck,

i.e., our scheme is consistent to first order.
This suggests what convergence we should expect.
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Local truncation error D06-S08(b)

For ODE IVP’s, our local truncation error is again defined as the residual of the scheme when the exact solution is
inserted, and is consistent if k Ó 0 causes the LTE to vanish.

To fix details, let’s consider forward Euler:

un`1 “ un ` kfn.

First, we rewrite the scheme to match the units of the original ODE:

un`1 ´ un

k
“ fn ›Ñ D`un ´ fn “ 0,

where we have introduced the difference operator D`un :“ 1{k pun`1 ´ unq.
Note the superscript for `.

After a short computation, we conclude:

LTEn :“
››D`uptnq ´ fptn,uptnqq

›› » k}u2ptnq} “ Ck,

i.e., our scheme is consistent to first order.
This suggests what convergence we should expect.
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Stability D06-S09(a)

There are several notions of stability for numerical methods for IVP’s.

Our previous definition of stability concerned the map from scheme inputs to outputs.
Here, that is the map from initial data to, say, un for any/all n P rNs.

Unfortunately, this map is much more complicated than our previous example.

To see why, note that

un`1 ´ un

k
“ fn “ f ptn,unq ‰ f ptn,uptnqq ,

i.e., at every step, we are actually solving a perturbed ODE system that accumulates errors from previous steps.
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Stability D06-S09(b)

There are several notions of stability for numerical methods for IVP’s.

Our previous definition of stability concerned the map from scheme inputs to outputs.
Here, that is the map from initial data to, say, un for any/all n P rNs.

Unfortunately, this map is much more complicated than our previous example.

To see why, note that

un`1 ´ un

k
“ fn “ f ptn,unq ‰ f ptn,uptnqq ,

i.e., at every step, we are actually solving a perturbed ODE system that accumulates errors from previous steps.
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0-stability D06-S10(a)

It turns out that one way to successfully control these perturbations is to assume that the scheme residual operating
on the exact solution does not grow out of control.

For Forward Euler, this is:

Rnuptnq :“ D`uptnq ´ fptn, uptnqq.

Definition
A numerical scheme is 0-stable if there is some constant C such that for all h sufficiently small,

max
nPrNs

}en} § C

ˆ
}e0} ` max

nPrNs
}Rnuptnq}

˙
.

(Above, Rn is the residual of the corresponding time integration scheme.)
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Convergence D06-S11(a)

max
nPrNs

}en} § C

ˆ
}e0} ` max

nPrNs
}Rnuptnq}

˙
.

It’s not too difficult to see how 0-stability and consistency yield convergence:
– In most practical cases, e0 “ 0.
– We have }Rnuptnq} “ LTEn.

I.e.,

Consistency ` 0-stability ùñ Convergence

It remains to establish that schemes of interest are consistent and 0-stable.
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Convergence D06-S11(b)

max
nPrNs

}en} § C

ˆ
}e0} ` max

nPrNs
}Rnuptnq}

˙
.

It’s not too difficult to see how 0-stability and consistency yield convergence:
– In most practical cases, e0 “ 0.
– We have }Rnuptnq} “ LTEn.

I.e.,

Consistency ` 0-stability ùñ Convergence

It remains to establish that schemes of interest are consistent and 0-stable.
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0-stability for Forward Euler, I D06-S12(a)
A technical but somewhat straightforward computation shows that Forward Euler is 0-stable.
With,

! :“ max
nPrNs

}Rnuptnq},

then

en “ uptnq ´ un “ uptnq ´ uptn´1q ` uptn´1q ´ un´1 ` un´1 ´ un

“ en´1 ` kRnuptnq ` kfptn´1,uptn´1qq ´ kfn´1

“ en´1 ` k rfptn´1,uptn´1qq ´ fptn´1,un´1qs ` kRnuptnq

Therefore, we have,

}en} § }en´1} ` k}fptn´1,uptn´1qq ´ fptn´1,un´1q} ` k!

§ }en´1} ` kL}uptn´1q ´ un´1} ` k!

“ }en´1} p1 ` kLq ` k!,

where the last inequality uses (assumed!) Lipschitz continuity of f :

}fpt,xq ´ fpt,yq} § L}x ´ y}.
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0-stability for Forward Euler, I D06-S12(b)
A technical but somewhat straightforward computation shows that Forward Euler is 0-stable.
With,

! :“ max
nPrNs

}Rnuptnq},

then

en “ uptnq ´ un “ uptnq ´ uptn´1q ` uptn´1q ´ un´1 ` un´1 ´ un

“ en´1 ` kRnuptnq ` kfptn´1,uptn´1qq ´ kfn´1

“ en´1 ` k rfptn´1,uptn´1qq ´ fptn´1,un´1qs ` kRnuptnq

Therefore, we have,

}en} § }en´1} ` k}fptn´1,uptn´1qq ´ fptn´1,un´1q} ` k!

§ }en´1} ` kL}uptn´1q ´ un´1} ` k!

“ }en´1} p1 ` kLq ` k!,

where the last inequality uses (assumed!) Lipschitz continuity of f :

}fpt,xq ´ fpt,yq} § L}x ´ y}.
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0-stability for Forward Euler, II D06-S13(a)

! “ max
nPrNs

}Rnuptnq}, }en} § }en´1} p1 ` kLq ` k!,

Iterating on the inequality, we have,

}en} § }en´1} p1 ` kLq ` k!

§ p1 ` kLq2}en´2} ` k! p1 ` p1 ` kLqq
...

§ p1 ` kLqn}e0} ` k!
n´1ÿ

j“0

p1 ` kLqj

}e0}“0“ k!
n´1ÿ

j“0

p1 ` kLqj

p1`a{NqN §exp a
§ k!

n´1ÿ

j“0

eLtj

x fiÑex is convex§ !

ª T

0
eLtdt § eLT

L
! “ C max

nPrNs
}Rnuptnq}.
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Forward Euler convergence D06-S14(a)

Hence, we have that Forward Euler is convergent:

LTEn “ Opkq 0-stabilityùñ max
nPrNs

}en} “ Opkq.

This proves strict first-order convergence, but typically the hidden constants are very large, e.g., behave like eLT .

Note that the statements above are asymptotic in k as k Ó 0. More refined (and in some sense useful) analysis can
be achieved if we consider finite, nonzero k.
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Forward Euler convergence D06-S14(b)

Hence, we have that Forward Euler is convergent:

LTEn “ Opkq 0-stabilityùñ max
nPrNs

}en} “ Opkq.

This proves strict first-order convergence, but typically the hidden constants are very large, e.g., behave like eLT .

Note that the statements above are asymptotic in k as k Ó 0. More refined (and in some sense useful) analysis can
be achieved if we consider finite, nonzero k.
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