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Polynomial interpolation D05-S02(a)

Let’s recall some basics about polynomial interpolation on : Let x1, . . . xn be any distinct nodes in , and let
f : Cp ; q be given. Our goal is to construct a polynomial p P Pn´1 :“ spant1, x, . . . , xn´1u such that,

ppxjq “ fpxjq, j P rns

There are several ways to tackle this problem; one major outcome is that this problem is unisolvent: there is a
bijection between pfjqjPrns and Pn´1.
(In fact this bijection is a linear map.)
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Polynomial interpolation D05-S02(b)

Let’s recall some basics about polynomial interpolation on : Let x1, . . . xn be any distinct nodes in , and let
f : Cp ; q be given. Our goal is to construct a polynomial p P Pn´1 :“ spant1, x, . . . , xn´1u such that,

ppxjq “ fpxjq, j P rns
Direct linear algebra:

ppxq “
nÿ

j“1

cjx
j´1.

Asserting the interpolation conditions yields the linear system:

V c “ f , c “ pc1, . . . , cnqT , f “ pfpx1q, . . . , fpxnqqT ,

where V is a Vandermonde matrix:

pV qj,k “ xk´1
j , j, k P rns.

One can show that detV ‰ 0:

detV “
π

1§j†k§n

pxk ´ xjq,

establishing unisolvence.
This procedure requires Opn3q effort.
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Polynomial interpolation D05-S02(c)

Let’s recall some basics about polynomial interpolation on : Let x1, . . . xn be any distinct nodes in , and let
f : Cp ; q be given. Our goal is to construct a polynomial p P Pn´1 :“ spant1, x, . . . , xn´1u such that,

ppxjq “ fpxjq, j P rns
Newton form:

ppxq “
nÿ

j“1

cj�jpxq, �jpxq :“
j´1π

k“1

px ´ xkq

Note that �jpxkq “ 0 for k † j, so that a direct linear algebraic system is upper-triangular:
– The diagonal of the corresponding linear system matrix contains no zeros: unisolvence
– The cj are computable in Opn2q effort.

Moreover, back-substitution yields an extremely useful fact: the cj are simply (Newton) divided differences:

cj “ f rx1, . . . , xjs,
where f r¨s are defined recursively:

f rxjs “ fpxjq, j P rns

f rxj , xj`1, . . . , xk´1, xks “ f rxj`1, . . . , xks ´ f rxj , . . . , xk´1s
xk ´ xj

, 1 § j † k § n.

These divided differences are typically computed in a triangular array/tableau (which is Opn2q effort to construct).
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Polynomial interpolation D05-S02(d)

Let’s recall some basics about polynomial interpolation on : Let x1, . . . xn be any distinct nodes in , and let
f : Cp ; q be given. Our goal is to construct a polynomial p P Pn´1 :“ spant1, x, . . . , xn´1u such that,

ppxjq “ fpxjq, j P rns

Lagrange form:

ppxq “
nÿ

j“1

cj`jpxq, `jpxq :“
±

kPrnsztkupx ´ xkq
±

kPrnsztkupxj ´ xkq .

The functions `j are called Lagrange interpolating polynomials. Of particular importance is that, by construction,
they satisfy,

`jpxkq “ �j,k, j, k P rns.

I.e., the corresponding interpolatory linear algebraic system matrix is I. Thus, the coefficients are:

cj “ fpxjq.

I.e., no linear algebra is required at all: computation of the coefficients is Opnq. But evaluating the `j functions
requires Opn2q effort.

Again, this procedure confirms univsolvence of the interpolation procedure.
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Polynomial interpolation D05-S02(e)

Let’s recall some basics about polynomial interpolation on : Let x1, . . . xn be any distinct nodes in , and let
f : Cp ; q be given. Our goal is to construct a polynomial p P Pn´1 :“ spant1, x, . . . , xn´1u such that,

ppxjq “ fpxjq, j P rns

There are some other approaches to constructing interpolants as well. For example:

ppxq “
∞

jPrns
wjfj
x´xj∞

jPrns
wj

x´xj

, wj “ 1
±

kPrnsztjupxk ´ xjq .

It is indeed true that p P Pn´1 with ppxjq “ fpxjq.

This explicitly provides an Opnq formula for the interpolant, if Opn2q effort is expended to compute the weights wj .

This is called the barycentric (Lagrange) form of the interoplant.
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The error in polynomial interpolation D05-S03(a)

The error in polynomial approximation is well-studied. Here is one Lagrange remainder form for the error:

Theorem
Assume f P Cnpra, bsq where tx1, . . . , xnu Ä ra, bs. With p the degree-pn ´ 1q polynomial interpolant of f , then for

any x P ra, bs, there exists a ypxq P ra, bs such that:

fpxq ´ ppxq “ f pnqpyq
n!

π

jPrns
px ´ xjq

If the nodes are equispaced:

xj “ a ` pj ´ 1qh, h “ b ´ a

n ´ 1
,

then
ˇ̌
ˇ̌
ˇ̌

π

jPrns
px ´ xjq

ˇ̌
ˇ̌
ˇ̌ § pn ´ 1q!

4
hn

i.e., this error is Ophnq.
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The error in polynomial interpolation D05-S03(b)

The error in polynomial approximation is well-studied. Here is one Lagrange remainder form for the error:

Theorem
Assume f P Cnpra, bsq where tx1, . . . , xnu Ä ra, bs. With p the degree-pn ´ 1q polynomial interpolant of f , then for

any x P ra, bs, there exists a ypxq P ra, bs such that:

fpxq ´ ppxq “ f pnqpyq
n!

π

jPrns
px ´ xjq

If the nodes are equispaced:

xj “ a ` pj ´ 1qh, h “ b ´ a

n ´ 1
,

then
ˇ̌
ˇ̌
ˇ̌

π

jPrns
px ´ xjq

ˇ̌
ˇ̌
ˇ̌ § pn ´ 1q!

4
hn

i.e., this error is Ophnq.
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Some polynomial interpolation theory, I D05-S04(a)

The error bound on equispaced nodes decays to zero as h Ó 0. One can prove the following related result:

Theorem
Let f P Cpra, bsq. Then there exists some triangular array of nodes, txj,nujPrns,nP Ä ra, bs, with txj,nujPrns
distinct, such that the sequence of polynomials pn P Pn´1 that interpolate f on txjujPrns converge uniformly to f
on ra, bs.

Unfortunately, since f pnq can be badly behaved, one can always construct adversarial examples.

Theorem
Let txj,nujPrns,nP Ä ra, bs be any triangular array of nodes. Then there exists a function f P Cpra, bsq such that

the sequence of interpolating polynomials pn diverges from f in the uniform norm on ra, bs.
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Some polynomial interpolation theory, I D05-S04(b)

The error bound on equispaced nodes decays to zero as h Ó 0. One can prove the following related result:

Theorem
Let f P Cpra, bsq. Then there exists some triangular array of nodes, txj,nujPrns,nP Ä ra, bs, with txj,nujPrns
distinct, such that the sequence of polynomials pn P Pn´1 that interpolate f on txjujPrns converge uniformly to f
on ra, bs.

Unfortunately, since f pnq can be badly behaved, one can always construct adversarial examples.

Theorem
Let txj,nujPrns,nP Ä ra, bs be any triangular array of nodes. Then there exists a function f P Cpra, bsq such that

the sequence of interpolating polynomials pn diverges from f in the uniform norm on ra, bs.
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Some polynomial interpolation theory, II D05-S05(a)

Nevertheless, the form of the Lagrange remainder error suggests that solving the minimization problem,

min
txjujÄra,bs

π

jPrns
px ´ xjq,

should produce a “good” sequence of nodes.
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Some polynomial interpolation theory, II D05-S05(b)

Nevertheless, the form of the Lagrange remainder error suggests that solving the minimization problem,

min
txjujÄra,bs

π

jPrns
px ´ xjq,

should produce a “good” sequence of nodes.

The solution to this minimization problem is the set of Chebyshev nodes, and they provide a reasonable set of
interpolation points.

Theorem
If f is absolutely continuous on ra, bs, then the sequence of interpolating polynomials on the Chebyshev nodes

converges to f in the uniform norm.
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Finite differences D05-S06(a)
Interpolation, and in particular the existence of a reasonable error estimate, suggests a new strategy for constructing
finite difference formulas that evaluate derivative of uppqpxq at some point xj :

1. Decide on a stencil xj´r, . . . , xj , . . . xj`s

2. Construct a degree-ps ` rq polynomial that interpolates u at the stencil points
3. Take the pth derivative of u
4. Evaluate the pth derivative of the interpolant at xj .

(You can convince yourself that indeed this will yield an approximation that is a linear combination of u at the stencil
points.)

Example
Use polynomial interpolation to construct an approximation to the second derivative at xj using the stencil
xj´1, xj , xj`1, where xj˘1 “ xj ˘ h with h ° 0.
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Finite differences D05-S06(b)
Interpolation, and in particular the existence of a reasonable error estimate, suggests a new strategy for constructing
finite difference formulas that evaluate derivative of uppqpxq at some point xj :

1. Decide on a stencil xj´r, . . . , xj , . . . xj`s

2. Construct a degree-ps ` rq polynomial that interpolates u at the stencil points
3. Take the pth derivative of u
4. Evaluate the pth derivative of the interpolant at xj .

(You can convince yourself that indeed this will yield an approximation that is a linear combination of u at the stencil
points.)

Example
Use polynomial interpolation to construct an approximation to the second derivative at xj using the stencil
xj´1, xj , xj`1, where xj˘1 “ xj ˘ h with h ° 0.
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Finite differences and interpolation D05-S07(a)

The previous exercise suggests that polynomial interpolation is doing something similar to eliminating entries in a
Taylor series expansion.

Theorem
On any stencil of points (equidistant or not), the finite difference formula constructed by eliminating Taylor series

terms to as high an order as possible is equivalent to the finite difference formula obtained through polynomial

interpolation on the stencil.

In practice, it’s frequently easier to use Taylor series, but interpolation has its uses. For example, it’s conceptually
easier to numerically implement.
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Finite differences and interpolation D05-S07(b)

The previous exercise suggests that polynomial interpolation is doing something similar to eliminating entries in a
Taylor series expansion.

Theorem
On any stencil of points (equidistant or not), the finite difference formula constructed by eliminating Taylor series

terms to as high an order as possible is equivalent to the finite difference formula obtained through polynomial

interpolation on the stencil.

In practice, it’s frequently easier to use Taylor series, but interpolation has its uses. For example, it’s conceptually
easier to numerically implement.
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Quadrature D05-S08(a)

A second useful task is approximating integrals via sums of point values, i.e., quadrature:
ª b

a
fpxqdx «

ÿ

jPrns
fpxjqwj .

Here the “unknowns” are the nodes xj and the quadrature weights wj .

Like interpolation, we’ll mostly consider the nodes as fixed, and our task is to determine “good” weights.

Taking inspiration from finite differences: once the nodes are declared, it’s probably a reasonble idea to (i)
approximate an integrand by forming a polynomial interpolant and (ii) subsequently integrating the interpolant.

The weights resulting from this procedure yield an interpolatory quadrature rule.

An exercise reveals that interpolatory quadrature rules have the following formula for the weights:

wj “
ª b

a
`jpxqdx,

where `j is the Lagrange polynomial centered at xj on the nodes txjujPrns.
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Quadrature D05-S08(b)

A second useful task is approximating integrals via sums of point values, i.e., quadrature:
ª b

a
fpxqdx «

ÿ

jPrns
fpxjqwj .

Here the “unknowns” are the nodes xj and the quadrature weights wj .

Like interpolation, we’ll mostly consider the nodes as fixed, and our task is to determine “good” weights.

Taking inspiration from finite differences: once the nodes are declared, it’s probably a reasonble idea to (i)
approximate an integrand by forming a polynomial interpolant and (ii) subsequently integrating the interpolant.

The weights resulting from this procedure yield an interpolatory quadrature rule.

An exercise reveals that interpolatory quadrature rules have the following formula for the weights:

wj “
ª b

a
`jpxqdx,

where `j is the Lagrange polynomial centered at xj on the nodes txjujPrns.
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Quadrature D05-S08(c)

A second useful task is approximating integrals via sums of point values, i.e., quadrature:
ª b

a
fpxqdx «

ÿ

jPrns
fpxjqwj .

Here the “unknowns” are the nodes xj and the quadrature weights wj .

Like interpolation, we’ll mostly consider the nodes as fixed, and our task is to determine “good” weights.

Taking inspiration from finite differences: once the nodes are declared, it’s probably a reasonble idea to (i)
approximate an integrand by forming a polynomial interpolant and (ii) subsequently integrating the interpolant.

The weights resulting from this procedure yield an interpolatory quadrature rule.

An exercise reveals that interpolatory quadrature rules have the following formula for the weights:

wj “
ª b

a
`jpxqdx,

where `j is the Lagrange polynomial centered at xj on the nodes txjujPrns.

A. Narayan (U. Utah – Math/SCI) Math 6620: Polynomial methods



Moment matching D05-S09(a)

While integrating Lagrange polynomials is an explicit way to compute interpolatory quadrature weights, like forming
finite differences, there is an approach that is typically easier by hand:

Suppose we assert that the weights wj are formed in order to ensure an exact integral on Pn´1:

ª b

a
xkdx “

ÿ

jPrns
wjx

k
j , k “ 0, . . . , n ´ 1.

This is a well-posed strategy (in principle) since it forms a size-n linear system for the n unknown weights.

This approach is called moment matching. The principle is to form a quadrature rule that exactly integrates
polynomials to as high a degree as possible.

Like the finite difference case, there is an equivalence with interpolation.

Theorem
For fixed distinct nodes txjujPrns, the weights of an interpolatory quadrature rule are identical to those of a moment

matching quadrature rule.
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Moment matching D05-S09(b)

While integrating Lagrange polynomials is an explicit way to compute interpolatory quadrature weights, like forming
finite differences, there is an approach that is typically easier by hand:

Suppose we assert that the weights wj are formed in order to ensure an exact integral on Pn´1:

ª b

a
xkdx “

ÿ

jPrns
wjx

k
j , k “ 0, . . . , n ´ 1.

This is a well-posed strategy (in principle) since it forms a size-n linear system for the n unknown weights.

This approach is called moment matching. The principle is to form a quadrature rule that exactly integrates
polynomials to as high a degree as possible.

Like the finite difference case, there is an equivalence with interpolation.

Theorem
For fixed distinct nodes txjujPrns, the weights of an interpolatory quadrature rule are identical to those of a moment

matching quadrature rule.
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Examples D05-S10(a)

Example
The following is a one-point qudarature rule approximation:

ª h

0
upxqdx « hup0q.

I.e., x1 “ 0 and w1 “ h.

The order of accuracy of this rule is the constant p in an Ophpq estimation of,
ª h

0
upxqdx ´ hup0q

What is the order of accuracy of this quadrature rule?

An essentially identical quadrature rule approximation is:

1

h

ª h

0
upxqdx « up0q.

What is the order of accuracy of this quadrature rule?
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Examples D05-S10(b)

Example
The following is a one-point qudarature rule approximation:

ª h

0
upxqdx « hup0q.

I.e., x1 “ 0 and w1 “ h.

The order of accuracy of this rule is the constant p in an Ophpq estimation of,
ª h

0
upxqdx ´ hup0q

What is the order of accuracy of this quadrature rule?

An essentially identical quadrature rule approximation is:

1

h

ª h

0
upxqdx « up0q.

What is the order of accuracy of this quadrature rule?
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Examples D05-S11(a)

Example
Identify the order of accuracy of the quadrature rules,

ª h

0
upxqdx « huphq. 1

h

ª h

0
upxqdx « uphq.
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Examples D05-S12(a)

Example
Identify the weights and order of accuracy of the quadrature rules,

ª h

0
upxqdx « w0up0q ` w1uphq

1

h

ª h

0
upxqdx « w0

h
up0q ` w1

h
uphq
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