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Finite difference methods for 1D D04-S02(a)

Recall: we have discussed finite difference methods for the ODE:

—u (z) = f(z), x € (0,1)
u(0) = go,
u(l) = g1

The scheme essentially boils down to,

—D+D_’U,j:fj, j:1,...,N,
where,
fi = f(zj), uj ~ u(z;), zj = jh.
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Finite difference methods for 1D D04-S02(b)

Recall: we have discussed finite difference methods for the ODE:

—u (z) = f(z), x € (0,1)
u(0) = go,
u(l) = g1

The scheme essentially boils down to,
—DyD_u; = fj, j=1,...,N,
where,
i = f(zj), uj ~ u(z;), x; = jh.

We established:

— The scheme amounts to solving an N x N sparse linear system

— The scheme is second-order convergent
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Partial Differential Equations D04-S03(a)

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2D, we'll use the notation,

u = u(zx,y), V = (6x,8y)T, A=a§+a§.
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Partial Differential Equations

D04-S03(b)

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2D, we'll use the notation,

u = u(zx,y), V = (0z,0y)7, A=a§+a§.

A fairly general form for a 2D linear elliptic equation is the following:

=V - (k(z,y)Vu) = f(z,y), (x,y) € (0,1)?
u(0,y) = go(y), u(l,y) = g1(y), y € [0,1]
u(zx,0) = ho(x), u(x,1) = hi(x), x € [0, 1],

where k(x,y) is a symmetric matrix that is positive definite everywhere, i.e.,

v k(z,y)v >0, V (z,y) € [0,1]?, ve R?, v # 0.
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Partial Differential Equations

D04-S03(c)

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2D, we'll use the notation,

u = u(zx,y), V = (0z,0y)7, A=a§+a§.

A fairly general form for a 2D linear elliptic equation is the following:

=V - (k(z,y)Vu) = f(z,y), (x,y) € (0,1)?
u(0,y) = go(y), u(l,y) = g1(y), y € [0,1]
u(zx,0) = ho(x), u(x,1) = hi(x), x € [0, 1],

where k(x,y) is a symmetric matrix that is positive definite everywhere, i.e.,
v k(z,y)v >0, V (z,y) € [0,1]?, ve R?, v # 0.

Like the 1D case, this PDE models
— Spatially-dependent temperature u due to heat diffusion
— Kk encodes the heat diffusion, allowing heterogeneous, anisotropic heat diffusion.

— This equation also arises in electrostatics, graviational modeling, fluid flow, ....
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Common Specializations

The general elliptic problem is more recognizable with certain simplifications:

If we take k = I, then we obtain Poisson’s equation:
—Au = f
If we further specialize to f = 0, we obtain Laplace’s equation:

—Au = 0.

D04-S04(a)
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FD discretization D04-S05(a)

For simplicity, consider Poisson’s equation:

—Au = f(x,y), (z,y) € (0,1)*
w(0,) = go(y), u(l,y) = 91(y), y € [0,1]
u(x,0) = ho(x), u(x,1) = hi(z), x € [0, 1],

We define a uniform, isotropic grid of mesh spacing h = 1/(M + 1) over [0, 1]?:
ui,j ~ u(Ti, Yj), x; = ih, yj =jh,

fori,7 =0,...,M + 1. The unknowns are u; ; for¢,5 =1,..., M.
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FD discretization D04-S05(b)

For simplicity, consider Poisson’s equation:

—Au = f(x,y), (z,y) € (0,1)*
w(0,) = go(y), u(l,y) = 91(y), y € [0,1]
u(x,0) = ho(x), u(x,1) = hi(z), x € [0, 1],

We define a uniform, isotropic grid of mesh spacing h = 1/(M + 1) over [0, 1]?:
ui,j ~ u(Ti, Yj), x; = ih, yj =jh,
fori,7 =0,...,M + 1. The unknowns are u; ; for¢,5 =1,..., M.

An FD discretization proceeds in essentially the same way as before:

1

Uz (Ti,Yj) ® DEDZw; j = 2 (Wit1,5 — 2us5 +ui—1,5),
1

Uyy (24,y;) ~ DY DY u; j = g (i1 = 2uij +uij-1),

with local truncation errors,
DiDiu(ZUzay]) - u:c:z:(xi,yj) = ChQU:cx:cx = O(h2)7
DY DY u(wi, y;) — uyy(w4,y;) ~ Chuyyyy = O(h?),

hence we expect second-order accuracy with this discretization.
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The scheme D04-S06(a)

The full scheme is then given by,

—Uj,54+1 )
—ui—1,5  F4ui;  —uip1; = h7fi, i,j=1,..., M.
—Uj,5—1
with the boundary conditions,
uo,; = 90(¥j), un+1,5 = 91(y5),
u;,0 = ho(x;), ui m+1 = hi(x;).

Note that above we approximate Awu with grid values on a 5-point stencil. Hence we are using a 5-point stencil
approximation for the Laplacian.
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The scheme D04-S06(b)

The full scheme is then given by,

—Uj,54+1 )
—ui—1,5  F4ui;  —uip1; = h7fi, i,j=1,..., M.
—Uj,5—1
with the boundary conditions,
uo,; = 90(¥j), un+1,5 = 91(y5),
u;,0 = ho(x;), ui m+1 = hi(x;).

Note that above we approximate Awu with grid values on a 5-point stencil. Hence we are using a 5-point stencil
approximation for the Laplacian.

As one might expect, the above can again be written as a linear system:

A~ M 2
Au = f, u = (U’i,j)i,jzl e RM ,

where } is a vector depending only on f and the boundary conditions.
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Computational considerations in 2D D04-S07(a)

. M
Au = ¥, w = (uij); ;—1>

Unlike in 1D:
— A is not a tridiagonal (or pentadiagonal) matrix, but is still sparse
— The ordering of the unknowns (Uz’,j)%zl matters a considerable deal in determining the sparsity pattern of A.

— Ais M? x M?, and u contains M? degrees of freedom — much larger!

— There are no more simple “tricks” to invert A in O(M?) time, although iterative methods can solve the problem
in O(M?log M) time.
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Computational considerations in 2D D04-S07(b)

. M
Au = ¥, w = (uij); ;—1>

Unlike in 1D:

— A is not a tridiagonal (or pentadiagonal) matrix, but is still sparse

— The ordering of the unknowns (Uz’,j)%zl matters a considerable deal in determining the sparsity pattern of A.

— Ais M? x M?, and u contains M? degrees of freedom — much larger!

— There are no more simple “tricks” to invert A in O(M?) time, although iterative methods can solve the problem
in O(M?1log M) time.

However, some things are essentially the same:
— The scheme is second-order accurate (convergent) in h. (The LTE is second-order, and the scheme is stable.)

— In 1D, scaling h by 1/2 attained a reduced error scaled by 1/4. Since scaling h by 1/2 doubles the degrees of
freedom, this is a superlinear (quadratic) payoff.

— In 2D, scaling h by 1/2 again attains a reduced error scaled by 1/4. But scaling h by 1/2 quadruples the degrees
of freedom, so this is only a linear payoff.
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To higher dimensions D04-508(a)

Laplace's equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of
dimensions d:

0%u 02w
_A = A = — . o _
u=1r b 8:1:% + + 8:63

As expected, the same FD approach works, discretizing dimension-by-dimension.

The resulting Laplacian stencil has 2d + 1 points — the system matrix A is sparse, with only 2d + 1 non-zero entries
per row. ©®

With a uniform, isotropic grid of mesh spacing h = 1/(M + 1), there are M? ~ (1/h)? degrees of freedom. ®
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To higher dimensions D04-S08(b)

Laplace's equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of
dimensions d:

0%u 02w
—Au = f, Aui= — + -+ ——.
u=/ b 8x% + + 8:63

As expected, the same FD approach works, discretizing dimension-by-dimension.

The resulting Laplacian stencil has 2d + 1 points — the system matrix A is sparse, with only 2d + 1 non-zero entries
per row. ©®

With a uniform, isotropic grid of mesh spacing h = 1/(M + 1), there are M? ~ (1/h)? degrees of freedom. ®

Solving the linear system with iterative methods can be accomplished in slightly superlinear time, O(dM¢9log M)
time. ©

The scheme is still stable, and the LTE is second-order in h. ®
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To higher dimensions D04-S08(c)

Laplace's equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of
dimensions d:

0%u 02w
_A = A = — . o _
u=1r b 8x% + + 8:63

As expected, the same FD approach works, discretizing dimension-by-dimension.
The cost vs. accuracy payoff is sublinear if d > 3. ®

In particular, h < h/2 requires 2¢ times more degrees of freedom, with an error reduced to only 272 times the
original amount.

More pedantically, the order of convergence, relative to the number of degrees of freedom N = M9, is 2/d, i.e., the
error scales like N—2/d

This exponential attentuation of convergence is one manifestation of the curse of dimensionality.
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Delaying the curse of dimensionality D04-S09(a)

At least in 2D, there is a “trick” that restores second-order convergence relative to the degrees of freedom, i.e., has
error that is fourth-order in h.
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Delaying the curse of dimensionality D04-S09(b)

At least in 2D, there is a “trick” that restores second-order convergence relative to the degrees of freedom, i.e., has
error that is fourth-order in h.

The idea is as follows: we know that the standard 5-point stencil Laplacian approximation satisfies,

1
h2
~ Au(zi,y;) + Ch? (Uzzre + Uyyyy) -

Astij = -5 (FWit1,j = Ui-1,j = Ui j+1 — Wi j—1 + 4u; 5)

The LTE term ugzzza + Uyyyy is not something we know how to compute without knowledge of u, but this
expression is similar to the biharmonic operator:

A% = AAu = (02 + 85)(6% + 6§)u = Ugzza + 2Uzayy + Uyyyy-
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Delaying the curse of dimensionality D04-S09(c)

At least in 2D, there is a “trick” that restores second-order convergence relative to the degrees of freedom, i.e., has
error that is fourth-order in h.

The idea is as follows: we know that the standard 5-point stencil Laplacian approximation satisfies,
1
h2
~ Au(zi,y;) + Ch? (ugzzs + Uyyyy ) -

Astij = -5 (FWit1,j = Ui-1,j = Ui j+1 — Wi j—1 + 4u; 5)

The LTE term ugzzza + Uyyyy is not something we know how to compute without knowledge of u, but this
expression is similar to the biharmonic operator:

A? = AAu = (82 + 85)(6% + 8§)u = Uggrzr + 2Uzzyy + Uyyyy-
The reason this is interesting is that
—A?%y =AAu = A,
and we know f, so in principle can compute Af.

l.e., can we “change” the LTE expression to resemble AZy?
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The 9-point stencil, | D04-510(a)

We will attain a biharmonic-like LTE via a combination of two 5-point stencils. The first stencil is Asu; ;, that we
are already familiar with.

The second stencil is essentially the same, but is “rotated” by 45°:

N —Ui—1,5+1 —Uit1,54+1 5
Asu; j = +4u; j ~ 2h Au(azi,yj),
—Uj—1,j—1 —Uj41,5—1

The LTE for this approximation similarly contains fourth derivatives, but of a different type.
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The 9-point stencil, |

D04-S10(b)

We will attain a biharmonic-like LTE via a combination of two 5-point stencils. The first stencil is Asu; ;, that we

are already familiar with.

The second stencil is essentially the same, but is “rotated” by 45°:

N —Ui—1,5+1 —Uit1,54+1 5
Asu; j = +4u; j ~ 2h Au(azi,yj),
—Uj—1,j—1 —Uj41,5—1

The LTE for this approximation similarly contains fourth derivatives, but of a different type.
If we consider a combination of these approximations,
AAsu; 5 + (1 — N Aszu, 4,

and choose A = 1/3, then after some (painful) computation, we find,

1

1 2 1
Au(ws,y;) + h* (A%u(@i,y;)) + O(RY) 385U+ gﬁsuz',jj |2

This results in the 9-point stencil approximation:

1 —Ui—1,5+41 —4Ui 541 —Uir1,541
Au(zi,y;) ~ Dgu; j == oz —dui_1 20w, 4 —4u; 41 5
—Ui—1,5—-1 —4U;j-1  —UH1,—-1
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The 9-point stencil, Il D04-S11(a)

What have we accomplished? The LTE for the 9-point approximation is h?/12A2%u + O(h*) = h2/12Af + O(h%).
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The 9-point stencil, Il D04-S11(b)

What have we accomplished? The LTE for the 9-point approximation is h?/12A2%u + O(h*) = h2/12Af + O(h%).
For Laplace's equation (f = 0), then clearly Af = 0, hence, the FD scheme
Aguij = fig,

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th order convergence in h, or
second-order convergence in M2 ~ 1/h2. l.e., this scheme achieves quadratic accuracy vs cost payoff.
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The 9-point stencil, Il D04-S11(c)

What have we accomplished? The LTE for the 9-point approximation is h?/12A2%u + O(h*) = h2/12Af + O(h%).

For Laplace's equation (f = 0), then clearly Af = 0, hence, the FD scheme
Aguij = fig,

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th order convergence in h, or
second-order convergence in M2 ~ 1/h2. l.e., this scheme achieves quadratic accuracy vs cost payoff.

For Poisson’s equation (f # 0), then if we have the ability to compute F' := Af, then the modified FD scheme,

h2
Aotij = fij+ 5 Fij

will be 4th order accurate in h. If Af is not explicitly computable, the same accuracy is achievable via the
approximation,

h2
Agu; j = fi; + EAE)fz‘,j-
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Deferred corrections D04-S12(a)

The previous idea is not really generalizable to other problems, as we must hope that a serendipitous stencil that
achieves a particular LTE is identifiable.

The method of deferred corrections seeks to make the above idea more practical: for the Poisson problem, first we
compute the solution u to

Asti ;= fij,
and second use u to compute approximations to the 5-point LTE truncation error

approximate h2/12(uwmmx FUyyyy)

Fi,j
Finally, we solve the corrected problem for w:
Asuij = fij + Fij

With proper construction of Fj ;, this scheme is again fourth-order accurate in h.

A. Narayan (U. Utah — Math/SCI) Math 6620: FD for stationary problems



Loty colve  Spme f;w&p@dm FWWM /

~ L
u{: qu - hl(l’(j_,"l%"fujm)

]
i
ifilt,)- u({n)j U (w} < u(xj) ty)
) 0
hi " % Y
ﬁ“sl”‘s) b



References | D04-S13(a)

@ LeVeque, Randall J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. SIAM. ISBN: 978-0-89871-783-9.

A. Narayan (U. Utah — Math/SCl) Math 6620: FD for stationary problems



