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Finite difference methods for 1D D04-S02(a)

Recall: we have discussed finite difference methods for the ODE:

´u2pxq “ fpxq, x P p0, 1q
up0q “ g0,

up1q “ g1.

The scheme essentially boils down to,

´D`D´uj “ fj , j “ 1, . . . , N,

where,

fj “ fpxjq, uj « upxjq, xj “ jh.

We established:
– The scheme amounts to solving an N ˆ N sparse linear system
– The scheme is second-order convergent
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Finite difference methods for 1D D04-S02(b)

Recall: we have discussed finite difference methods for the ODE:

´u2pxq “ fpxq, x P p0, 1q
up0q “ g0,

up1q “ g1.

The scheme essentially boils down to,

´D`D´uj “ fj , j “ 1, . . . , N,

where,

fj “ fpxjq, uj « upxjq, xj “ jh.

We established:
– The scheme amounts to solving an N ˆ N sparse linear system
– The scheme is second-order convergent
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Partial Differential Equations D04-S03(a)

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2D, we’ll use the notation,

u “ upx, yq, r “ pBx, ByqT , � “ B2
x ` B2

y .

A fairly general form for a 2D linear elliptic equation is the following:

´r ¨ ppx, yqruq “ fpx, yq, px, yq P p0, 1q2
up0, yq “ g0pyq, up1, yq “ g1pyq, y P r0, 1s
upx, 0q “ h0pxq, upx, 1q “ h1pxq, x P r0, 1s,

where px, yq is a symmetric matrix that is positive definite everywhere, i.e.,

vTpx, yqv ° 0, @ px, yq P r0, 1s2, v P 2, v ‰ 0.

Like the 1D case, this PDE models
– Spatially-dependent temperature u due to heat diffusion
–  encodes the heat diffusion, allowing heterogeneous, anisotropic heat diffusion.
– This equation also arises in electrostatics, graviational modeling, fluid flow, ....
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Partial Differential Equations D04-S03(b)

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2D, we’ll use the notation,

u “ upx, yq, r “ pBx, ByqT , � “ B2
x ` B2

y .

A fairly general form for a 2D linear elliptic equation is the following:

´r ¨ ppx, yqruq “ fpx, yq, px, yq P p0, 1q2
up0, yq “ g0pyq, up1, yq “ g1pyq, y P r0, 1s
upx, 0q “ h0pxq, upx, 1q “ h1pxq, x P r0, 1s,

where px, yq is a symmetric matrix that is positive definite everywhere, i.e.,

vTpx, yqv ° 0, @ px, yq P r0, 1s2, v P 2, v ‰ 0.

Like the 1D case, this PDE models
– Spatially-dependent temperature u due to heat diffusion
–  encodes the heat diffusion, allowing heterogeneous, anisotropic heat diffusion.
– This equation also arises in electrostatics, graviational modeling, fluid flow, ....
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Partial Differential Equations D04-S03(c)

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2D, we’ll use the notation,

u “ upx, yq, r “ pBx, ByqT , � “ B2
x ` B2

y .

A fairly general form for a 2D linear elliptic equation is the following:

´r ¨ ppx, yqruq “ fpx, yq, px, yq P p0, 1q2
up0, yq “ g0pyq, up1, yq “ g1pyq, y P r0, 1s
upx, 0q “ h0pxq, upx, 1q “ h1pxq, x P r0, 1s,

where px, yq is a symmetric matrix that is positive definite everywhere, i.e.,

vTpx, yqv ° 0, @ px, yq P r0, 1s2, v P 2, v ‰ 0.

Like the 1D case, this PDE models
– Spatially-dependent temperature u due to heat diffusion
–  encodes the heat diffusion, allowing heterogeneous, anisotropic heat diffusion.
– This equation also arises in electrostatics, graviational modeling, fluid flow, ....
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Common Specializations D04-S04(a)

The general elliptic problem is more recognizable with certain simplifications:

If we take  “ I, then we obtain Poisson’s equation:

´�u “ f

If we further specialize to f “ 0, we obtain Laplace’s equation:

´�u “ 0.
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FD discretization D04-S05(a)
For simplicity, consider Poisson’s equation:

´�u “ fpx, yq, px, yq P p0, 1q2
up0, yq “ g0pyq, up1, yq “ g1pyq, y P r0, 1s
upx, 0q “ h0pxq, upx, 1q “ h1pxq, x P r0, 1s,

We define a uniform, isotropic grid of mesh spacing h “ 1{pM ` 1q over r0, 1s2:
ui,j « upxi, yjq, xi “ ih, yj “jh,

for i, j “ 0, . . . ,M ` 1. The unknowns are ui,j for i, j “ 1, . . . ,M .

An FD discretization proceeds in essentially the same way as before:

uxxpxi, yjq « Dx
`Dx

´ui,j “ 1

h2
pui`1,j ´ 2ui,j ` ui´1,jq ,

uyypxi, yjq « Dy
`Dy

´ui,j “ 1

h2
pui,j`1 ´ 2ui,j ` ui,j´1q ,

with local truncation errors,

Dx
`Dx

´upxi, yjq ´ uxxpxi, yjq » Ch2uxxxx “ Oph2q,
Dy

`Dy
´upxi, yjq ´ uyypxi, yjq » Ch2uyyyy “ Oph2q,

hence we expect second-order accuracy with this discretization.
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FD discretization D04-S05(b)
For simplicity, consider Poisson’s equation:

´�u “ fpx, yq, px, yq P p0, 1q2
up0, yq “ g0pyq, up1, yq “ g1pyq, y P r0, 1s
upx, 0q “ h0pxq, upx, 1q “ h1pxq, x P r0, 1s,

We define a uniform, isotropic grid of mesh spacing h “ 1{pM ` 1q over r0, 1s2:
ui,j « upxi, yjq, xi “ ih, yj “jh,

for i, j “ 0, . . . ,M ` 1. The unknowns are ui,j for i, j “ 1, . . . ,M .

An FD discretization proceeds in essentially the same way as before:

uxxpxi, yjq « Dx
`Dx

´ui,j “ 1

h2
pui`1,j ´ 2ui,j ` ui´1,jq ,

uyypxi, yjq « Dy
`Dy

´ui,j “ 1

h2
pui,j`1 ´ 2ui,j ` ui,j´1q ,

with local truncation errors,

Dx
`Dx

´upxi, yjq ´ uxxpxi, yjq » Ch2uxxxx “ Oph2q,
Dy

`Dy
´upxi, yjq ´ uyypxi, yjq » Ch2uyyyy “ Oph2q,

hence we expect second-order accuracy with this discretization.
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The scheme D04-S06(a)

The full scheme is then given by,

´ui,j`1

´ui´1,j `4ui,j ´ui`1,j

´ui,j´1

“ h2fi,j , i, j “ 1, . . . ,M.

with the boundary conditions,

u0,j “ g0pyjq, uM`1,j “ g1pyjq,
ui,0 “ h0pxiq, ui,M`1 “ h1pxiq.

Note that above we approximate �u with grid values on a 5-point stencil. Hence we are using a 5-point stencil
approximation for the Laplacian.

As one might expect, the above can again be written as a linear system:

Au “ pf , u “ pui,jqMi,j“1 P M2
,

where pf is a vector depending only on f and the boundary conditions.
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The scheme D04-S06(b)

The full scheme is then given by,

´ui,j`1

´ui´1,j `4ui,j ´ui`1,j

´ui,j´1

“ h2fi,j , i, j “ 1, . . . ,M.

with the boundary conditions,

u0,j “ g0pyjq, uM`1,j “ g1pyjq,
ui,0 “ h0pxiq, ui,M`1 “ h1pxiq.

Note that above we approximate �u with grid values on a 5-point stencil. Hence we are using a 5-point stencil
approximation for the Laplacian.

As one might expect, the above can again be written as a linear system:

Au “ pf , u “ pui,jqMi,j“1 P M2
,

where pf is a vector depending only on f and the boundary conditions.
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Computational considerations in 2D D04-S07(a)

Au “ pf , u “ pui,jqMi,j“1 ,

Unlike in 1D:
– A is not a tridiagonal (or pentadiagonal) matrix, but is still sparse
– The ordering of the unknowns pui,jqMi,j“1 matters a considerable deal in determining the sparsity pattern of A.

– A is M2 ˆ M2, and u contains M2 degrees of freedom – much larger!
– There are no more simple “tricks” to invert A in OpM2q time, although iterative methods can solve the problem

in OpM2 logMq time.
However, some things are essentially the same:

– The scheme is second-order accurate (convergent) in h. (The LTE is second-order, and the scheme is stable.)
– In 1D, scaling h by 1{2 attained a reduced error scaled by 1{4. Since scaling h by 1{2 doubles the degrees of

freedom, this is a superlinear (quadratic) payoff.
– In 2D, scaling h by 1{2 again attains a reduced error scaled by 1{4. But scaling h by 1{2 quadruples the degrees

of freedom, so this is only a linear payoff.
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Computational considerations in 2D D04-S07(b)

Au “ pf , u “ pui,jqMi,j“1 ,

Unlike in 1D:
– A is not a tridiagonal (or pentadiagonal) matrix, but is still sparse
– The ordering of the unknowns pui,jqMi,j“1 matters a considerable deal in determining the sparsity pattern of A.

– A is M2 ˆ M2, and u contains M2 degrees of freedom – much larger!
– There are no more simple “tricks” to invert A in OpM2q time, although iterative methods can solve the problem

in OpM2 logMq time.
However, some things are essentially the same:

– The scheme is second-order accurate (convergent) in h. (The LTE is second-order, and the scheme is stable.)
– In 1D, scaling h by 1{2 attained a reduced error scaled by 1{4. Since scaling h by 1{2 doubles the degrees of

freedom, this is a superlinear (quadratic) payoff.
– In 2D, scaling h by 1{2 again attains a reduced error scaled by 1{4. But scaling h by 1{2 quadruples the degrees

of freedom, so this is only a linear payoff.
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To higher dimensions D04-S08(a)

Laplace’s equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of
dimensions d:

´�u “ f, �u :“ B2u

Bx2
1

` ¨ ¨ ¨ ` B2u

Bx2
d

.

As expected, the same FD approach works, discretizing dimension-by-dimension.

The resulting Laplacian stencil has 2d ` 1 points – the system matrix A is sparse, with only 2d ` 1 non-zero entries
per row. ,

With a uniform, isotropic grid of mesh spacing h “ 1{pM ` 1q, there are Md „ p1{hqd degrees of freedom. /

Solving the linear system with iterative methods can be accomplished in slightly superlinear time, OpdMd logMq
time. ,

The scheme is still stable, and the LTE is second-order in h. ,
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To higher dimensions D04-S08(b)

Laplace’s equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of
dimensions d:

´�u “ f, �u :“ B2u

Bx2
1

` ¨ ¨ ¨ ` B2u

Bx2
d

.

As expected, the same FD approach works, discretizing dimension-by-dimension.

The resulting Laplacian stencil has 2d ` 1 points – the system matrix A is sparse, with only 2d ` 1 non-zero entries
per row. ,

With a uniform, isotropic grid of mesh spacing h “ 1{pM ` 1q, there are Md „ p1{hqd degrees of freedom. /

Solving the linear system with iterative methods can be accomplished in slightly superlinear time, OpdMd logMq
time. ,

The scheme is still stable, and the LTE is second-order in h. ,
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To higher dimensions D04-S08(c)

Laplace’s equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of
dimensions d:

´�u “ f, �u :“ B2u

Bx2
1

` ¨ ¨ ¨ ` B2u

Bx2
d

.

As expected, the same FD approach works, discretizing dimension-by-dimension.

The cost vs. accuracy payoff is sublinear if d • 3. /

In particular, h – h{2 requires 2d times more degrees of freedom, with an error reduced to only 2´2 times the
original amount.

More pedantically, the order of convergence, relative to the number of degrees of freedom N “ Md, is 2{d, i.e., the
error scales like N´2{d.

This exponential attentuation of convergence is one manifestation of the curse of dimensionality.
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Delaying the curse of dimensionality D04-S09(a)

At least in 2D, there is a “trick” that restores second-order convergence relative to the degrees of freedom, i.e., has
error that is fourth-order in h.

The idea is as follows: we know that the standard 5-point stencil Laplacian approximation satisfies,

�5ui,j “ 1

h2
p´ui`1,j ´ ui´1,j ´ ui,j`1 ´ ui,j´1 ` 4ui,jq

» �upxi, yjq ` Ch2 puxxxx ` uyyyyq .

The LTE term uxxxx ` uyyyy is not something we know how to compute without knowledge of u, but this
expression is similar to the biharmonic operator :

�2 :“ ��u “ pB2
x ` B2

yqpB2
x ` B2

yqu “ uxxxx ` 2uxxyy ` uyyyy .

The reason this is interesting is that

�2u “ ��u “ �f,

and we know f , so in principle can compute �f .

I.e., can we “change” the LTE expression to resemble �2u?
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Delaying the curse of dimensionality D04-S09(b)

At least in 2D, there is a “trick” that restores second-order convergence relative to the degrees of freedom, i.e., has
error that is fourth-order in h.

The idea is as follows: we know that the standard 5-point stencil Laplacian approximation satisfies,

�5ui,j “ 1

h2
p´ui`1,j ´ ui´1,j ´ ui,j`1 ´ ui,j´1 ` 4ui,jq

» �upxi, yjq ` Ch2 puxxxx ` uyyyyq .

The LTE term uxxxx ` uyyyy is not something we know how to compute without knowledge of u, but this
expression is similar to the biharmonic operator :

�2 :“ ��u “ pB2
x ` B2

yqpB2
x ` B2

yqu “ uxxxx ` 2uxxyy ` uyyyy .

The reason this is interesting is that

�2u “ ��u “ �f,

and we know f , so in principle can compute �f .

I.e., can we “change” the LTE expression to resemble �2u?
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Delaying the curse of dimensionality D04-S09(c)

At least in 2D, there is a “trick” that restores second-order convergence relative to the degrees of freedom, i.e., has
error that is fourth-order in h.

The idea is as follows: we know that the standard 5-point stencil Laplacian approximation satisfies,

�5ui,j “ 1

h2
p´ui`1,j ´ ui´1,j ´ ui,j`1 ´ ui,j´1 ` 4ui,jq

» �upxi, yjq ` Ch2 puxxxx ` uyyyyq .

The LTE term uxxxx ` uyyyy is not something we know how to compute without knowledge of u, but this
expression is similar to the biharmonic operator :

�2 :“ ��u “ pB2
x ` B2

yqpB2
x ` B2

yqu “ uxxxx ` 2uxxyy ` uyyyy .

The reason this is interesting is that

�2u “ ��u “ �f,

and we know f , so in principle can compute �f .

I.e., can we “change” the LTE expression to resemble �2u?
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The 9-point stencil, I D04-S10(a)
We will attain a biharmonic-like LTE via a combination of two 5-point stencils. The first stencil is �5ui,j , that we
are already familiar with.

The second stencil is essentially the same, but is “rotated” by 45˝:

r�5ui,j “
´ui´1,j`1 ´ui`1,j`1

`4ui,j

´ui´1,j´1 ´ui`1,j´1

« 2h2�upxi, yjq,

The LTE for this approximation similarly contains fourth derivatives, but of a different type.

If we consider a combination of these approximations,

��5ui,j ` p1 ´ �q r�5ui,j ,

and choose � “ 1{3, then after some (painful) computation, we find,

�upxi, yjq ` 1

12
h2

`
�2upxi, yjq˘ ` Oph4q » 2

3
�5ui,j ` 1

3
r�5ui,j .

This results in the 9-point stencil approximation:

�upxi, yjq « �9ui,j :“ 1

6h2

¨

˝
´ui´1,j`1 ´4ui,j`1 ´ui`1,j`1

´4ui´1,j 20ui,j ´4ui`1,j

´ui´1,j´1 ´4ui,j´1 ´ui`1,j´1

˛

‚
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The 9-point stencil, I D04-S10(b)
We will attain a biharmonic-like LTE via a combination of two 5-point stencils. The first stencil is �5ui,j , that we
are already familiar with.

The second stencil is essentially the same, but is “rotated” by 45˝:

r�5ui,j “
´ui´1,j`1 ´ui`1,j`1

`4ui,j

´ui´1,j´1 ´ui`1,j´1

« 2h2�upxi, yjq,

The LTE for this approximation similarly contains fourth derivatives, but of a different type.

If we consider a combination of these approximations,

��5ui,j ` p1 ´ �q r�5ui,j ,

and choose � “ 1{3, then after some (painful) computation, we find,

�upxi, yjq ` 1

12
h2

`
�2upxi, yjq˘ ` Oph4q » 2

3
�5ui,j ` 1

3
r�5ui,j .

This results in the 9-point stencil approximation:

�upxi, yjq « �9ui,j :“ 1

6h2

¨

˝
´ui´1,j`1 ´4ui,j`1 ´ui`1,j`1

´4ui´1,j 20ui,j ´4ui`1,j

´ui´1,j´1 ´4ui,j´1 ´ui`1,j´1

˛

‚
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The 9-point stencil, II D04-S11(a)

What have we accomplished? The LTE for the 9-point approximation is h2{12�2u ` Oph4q “ h2{12�f ` Oph4q.

For Laplace’s equation (f “ 0), then clearly �f “ 0, hence, the FD scheme

�9ui,j “ fi,j ,

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th order convergence in h, or
second-order convergence in M2 „ 1{h2. I.e., this scheme achieves quadratic accuracy vs cost payoff.

For Poisson’s equation (f ‰ 0q, then if we have the ability to compute F :“ �f , then the modified FD scheme,

�9ui,j “ fi,j ` h2

12
Fi,j ,

will be 4th order accurate in h. If �f is not explicitly computable, the same accuracy is achievable via the
approximation,

�9ui,j “ fi,j ` h2

12
�5fi,j .
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The 9-point stencil, II D04-S11(b)

What have we accomplished? The LTE for the 9-point approximation is h2{12�2u ` Oph4q “ h2{12�f ` Oph4q.

For Laplace’s equation (f “ 0), then clearly �f “ 0, hence, the FD scheme

�9ui,j “ fi,j ,

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th order convergence in h, or
second-order convergence in M2 „ 1{h2. I.e., this scheme achieves quadratic accuracy vs cost payoff.

For Poisson’s equation (f ‰ 0q, then if we have the ability to compute F :“ �f , then the modified FD scheme,

�9ui,j “ fi,j ` h2

12
Fi,j ,

will be 4th order accurate in h. If �f is not explicitly computable, the same accuracy is achievable via the
approximation,

�9ui,j “ fi,j ` h2

12
�5fi,j .
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The 9-point stencil, II D04-S11(c)

What have we accomplished? The LTE for the 9-point approximation is h2{12�2u ` Oph4q “ h2{12�f ` Oph4q.

For Laplace’s equation (f “ 0), then clearly �f “ 0, hence, the FD scheme

�9ui,j “ fi,j ,

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th order convergence in h, or
second-order convergence in M2 „ 1{h2. I.e., this scheme achieves quadratic accuracy vs cost payoff.

For Poisson’s equation (f ‰ 0q, then if we have the ability to compute F :“ �f , then the modified FD scheme,

�9ui,j “ fi,j ` h2

12
Fi,j ,

will be 4th order accurate in h. If �f is not explicitly computable, the same accuracy is achievable via the
approximation,

�9ui,j “ fi,j ` h2

12
�5fi,j .
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Deferred corrections D04-S12(a)

The previous idea is not really generalizable to other problems, as we must hope that a serendipitous stencil that
achieves a particular LTE is identifiable.

The method of deferred corrections seeks to make the above idea more practical: for the Poisson problem, first we
compute the solution ru to

�5rui,j “ fi,j ,

and second use ru to compute approximations to the 5-point LTE truncation error

ru
approximate h2{12puxxxx`uyyyyq››››››››››››››››››››››››Ñ Fi,j

Finally, we solve the corrected problem for u:

�5ui,j “ fi,j ` Fi,j

With proper construction of Fi,j , this scheme is again fourth-order accurate in h.
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