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Finite difference methods D03-S02(a)

One of our main strategies for (numerically) solving differential equations will be to replace derivatives at locations
with (secant, “finite”) differences of function evaluations.

Finite difference methods are a good starting point to understand numerical methods: they are simple, easy to
understand, and (typically) easy to implement.

The basic idea is to approximate derivatives in DE’s with finite difference approximations:

u1pxq « upx ` hq ´ upxq
h

or
upxq ´ upx ´ hq

h
or

upx ` hq ´ upx ´ hq
2h

The above are only examples, but are conceptually useful to understand the overall picture.

The above differences have an order of accuracy, which corresponds to the homogeneous degree of asymptototic
behavior of the error:

u1pxq “ upx ` hq ´ upxq
h

` Ophq

u1pxq “ upxq ´ upx ´ hq
h

` Ophq

u1pxq “ upx ` hq ´ upx ´ hq
2h

` Oph2q
One can similarly generate approximations in very general scenarios:

u1pxq “ Aupx ` 2hq ` Bupx ` hq ` Cupx ´ hq ` Ophpq, p “?
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Finite difference methods D03-S02(b)

One of our main strategies for (numerically) solving differential equations will be to replace derivatives at locations
with (secant, “finite”) differences of function evaluations.

Finite difference methods are a good starting point to understand numerical methods: they are simple, easy to
understand, and (typically) easy to implement.

The basic idea is to approximate derivatives in DE’s with finite difference approximations:

u1pxq « upx ` hq ´ upxq
h

or
upxq ´ upx ´ hq

h
or

upx ` hq ´ upx ´ hq
2h

The above are only examples, but are conceptually useful to understand the overall picture.

The above differences have an order of accuracy, which corresponds to the homogeneous degree of asymptototic
behavior of the error:

u1pxq “ upx ` hq ´ upxq
h

` Ophq

u1pxq “ upxq ´ upx ´ hq
h

` Ophq

u1pxq “ upx ` hq ´ upx ´ hq
2h

` Oph2q
One can similarly generate approximations in very general scenarios:

u1pxq “ Aupx ` 2hq ` Bupx ` hq ` Cupx ´ hq ` Ophpq, p “?
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Finite difference methods D03-S02(c)

One of our main strategies for (numerically) solving differential equations will be to replace derivatives at locations
with (secant, “finite”) differences of function evaluations.

Finite difference methods are a good starting point to understand numerical methods: they are simple, easy to
understand, and (typically) easy to implement.

The basic idea is to approximate derivatives in DE’s with finite difference approximations:

u1pxq « upx ` hq ´ upxq
h

or
upxq ´ upx ´ hq

h
or

upx ` hq ´ upx ´ hq
2h

The above are only examples, but are conceptually useful to understand the overall picture.

The above differences have an order of accuracy, which corresponds to the homogeneous degree of asymptototic
behavior of the error:

u1pxq “ upx ` hq ´ upxq
h

` Ophq

u1pxq “ upxq ´ upx ´ hq
h

` Ophq

u1pxq “ upx ` hq ´ upx ´ hq
2h

` Oph2q
One can similarly generate approximations in very general scenarios:

u1pxq “ Aupx ` 2hq ` Bupx ` hq ` Cupx ´ hq ` Ophpq, p “?
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Notation: difference operators D03-S03(a)

With upxq an unknown function for x P r0, 1s, we will discretize u by considering its value at M ` 2 equispaced
points on r0, 1s:

h :“ 1

M ` 1
, xj :“ jh, j “ 0, . . . ,M ` 1.

We will use uj to denote our computational approximation to upxjq, i.e.,

uj « upxjq
It will be convenient to use some shorthand for finite difference operators.

With uj « upxjq and xj an equidistant grid of spacing h, we define:

D`upxq :“
upx ` hq ´ upxq

h
, D´upxq :“

upxq ´ upx ´ hq
h

, D0upxq :“
upx ` hq ´ upx ´ hq

2h
,

D`uj :“
uj`1 ´ uj

h
, D´uj :“

uj ´ uj´1

h
, D0uj :“

uj`1 ´ uj´1

2h
.

Note that D˘,0 apply in conceptually similar ways to functions upxq as to discrete values uj .

These difference operators are convenient for shorthand. For example:

D`upxq “ u1pxq ` Ophq, D´upxq “ u1pxq ` Ophq, D0upxq “ u1pxq ` Oph2q.
We can chain these operators to approximate higher order derivatives:

D`D´upxq “ D´D`upxq “ u2pxq ` Oph2q
A. Narayan (U. Utah – Math/SCI) Math 6620: FD for 1D stationary problems



Notation: difference operators D03-S03(b)

With upxq an unknown function for x P r0, 1s, we will discretize u by considering its value at M ` 2 equispaced
points on r0, 1s:

h :“ 1

M ` 1
, xj :“ jh, j “ 0, . . . ,M ` 1.

We will use uj to denote our computational approximation to upxjq, i.e.,

uj « upxjq
It will be convenient to use some shorthand for finite difference operators.

With uj « upxjq and xj an equidistant grid of spacing h, we define:

D`upxq :“
upx ` hq ´ upxq

h
, D´upxq :“

upxq ´ upx ´ hq
h

, D0upxq :“
upx ` hq ´ upx ´ hq

2h
,

D`uj :“
uj`1 ´ uj

h
, D´uj :“

uj ´ uj´1

h
, D0uj :“

uj`1 ´ uj´1

2h
.

Note that D˘,0 apply in conceptually similar ways to functions upxq as to discrete values uj .

These difference operators are convenient for shorthand. For example:

D`upxq “ u1pxq ` Ophq, D´upxq “ u1pxq ` Ophq, D0upxq “ u1pxq ` Oph2q.
We can chain these operators to approximate higher order derivatives:

D`D´upxq “ D´D`upxq “ u2pxq ` Oph2q
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Notation: difference operators D03-S03(c)

With upxq an unknown function for x P r0, 1s, we will discretize u by considering its value at M ` 2 equispaced
points on r0, 1s:

h :“ 1

M ` 1
, xj :“ jh, j “ 0, . . . ,M ` 1.

We will use uj to denote our computational approximation to upxjq, i.e.,

uj « upxjq
It will be convenient to use some shorthand for finite difference operators.

With uj « upxjq and xj an equidistant grid of spacing h, we define:

D`upxq :“
upx ` hq ´ upxq

h
, D´upxq :“

upxq ´ upx ´ hq
h

, D0upxq :“
upx ` hq ´ upx ´ hq

2h
,

D`uj :“
uj`1 ´ uj

h
, D´uj :“

uj ´ uj´1

h
, D0uj :“

uj`1 ´ uj´1

2h
.

Note that D˘,0 apply in conceptually similar ways to functions upxq as to discrete values uj .

These difference operators are convenient for shorthand. For example:

D`upxq “ u1pxq ` Ophq, D´upxq “ u1pxq ` Ophq, D0upxq “ u1pxq ` Oph2q.
We can chain these operators to approximate higher order derivatives:

D`D´upxq “ D´D`upxq “ u2pxq ` Oph2q
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1D steady-state diffusion D03-S04(a)

Our prototypical equation is an ODE describing the steady-state temperature distribution on a one-dimensional
domain:

´u2pxq “ fpxq, x P p0, 1q
up0q “ g0,

up1q “ g1.

where f , g0, and g1 are presumed given and known.

This is a model for steady-state heat diffusion:
– The ODE models homogeneous, isotropic heat diffusion in an environment.
– upxq is the temperature at location x.
– The boundary conditions correspond to pinning the temperature value.
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1D steady-state diffusion D03-S04(b)

Our prototypical equation is an ODE describing the steady-state temperature distribution on a one-dimensional
domain:

´u2pxq “ fpxq, x P p0, 1q
up0q “ g0,

up1q “ g1.

where f , g0, and g1 are presumed given and known.

We construct a finite-difference (FD) scheme for this equation as follows:

u2pxq ›Ñ D`D´uj “ 1

h2
puj´1 ´ 2uj ` uj`1q

The scheme is to assert that ´u2pxjq “ fpxjq for j P rMs. Thus, we have:

´uj´1 ` 2uj ´ uj`1 “ h2fj , j “ 1, . . . ,M,

u0 “ g0,

uM`1 “ g1,

where we define fj “ fpxjq, and the last two equalities explicitly enforce boundary conditions at the discrete level.
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The scheme D03-S05(a)

´uj´1 ` 2uj ´ uj`1 “ h2fj , j “ 1, . . . ,M,

u0 “ g0,

uM`1 “ g1,

If we define vectors,

u “ pu1, . . . , uM qT , f “ pf1, . . . , fM qT ,

where the vector u contains our unknowns, we have the linear system,

Au “ f ` g0
h2

e1 ` g1
h2

eM ,

and the matrix A is symmetric:

A “ 1

h2

¨

˚̊
˚̊
˚̊
˚̋

2 ´1
´1 2 ´1

´1 2 ´1
. . .

. . .
. . .

´1 2

˛

‹‹‹‹‹‹‹‚

Goal: compute the vector u.
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Numerical considerations D03-S06(a)

To summarize: we have discretized the ODE

´u2pxq “ fpxq, x P p0, 1q
up0q “ g0,

up1q “ g1

to obtain the linear system

Au “ f ` g0
h2

e1 ` g1
h2

eM ,

Some observations worth noting:
– u fiÑ u2 is a symmetric operator, and A is a symmetric matrix.
– A is invertible (actually, its spectrum is explicitly computable)
– A is sparse, having only 3M ´ 2 nonzero entries.
– The naive computational cost of this approach is OpM3q, as that is the brute-force cost to invert an M ˆ M

matrix.
– For this particular problem, there are OpMq algorithms to solve the linear system.
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Numerical considerations D03-S06(b)

To summarize: we have discretized the ODE

´u2pxq “ fpxq, x P p0, 1q
up0q “ g0,

up1q “ g1

to obtain the linear system

Au “ f ` g0
h2

e1 ` g1
h2

eM ,

Some observations worth noting:
– u fiÑ u2 is a symmetric operator, and A is a symmetric matrix.
– A is invertible (actually, its spectrum is explicitly computable)
– A is sparse, having only 3M ´ 2 nonzero entries.
– The naive computational cost of this approach is OpM3q, as that is the brute-force cost to invert an M ˆ M

matrix.
– For this particular problem, there are OpMq algorithms to solve the linear system.

We can compute u. But is it true that uj « upxjq?
Does the numerical solution become more accurate as h Ó 0?

A. Narayan (U. Utah – Math/SCI) Math 6620: FD for 1D stationary problems



Consistency, I D03-S07(a)

Our high-level questions regard convergence of the scheme.

Before addressing these, consider a simpler question about “consistency”.

Definition
The Local Truncation Error (LTE) ⌧ for a scheme is the residual of the scheme when the exact solution upxjq is
inserted in place of uj .

⌧j :“ pD`D´upxjq ´ fpxjqq

This is the error in the ODE statement at xj due to our discretization.

An exercise shows that,

⌧j “ ch2up4qpxjq ` Oph4q,

where c is an absolute constant.
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Consistency, I D03-S07(b)

Our high-level questions regard convergence of the scheme.

Before addressing these, consider a simpler question about “consistency”.

Definition
The Local Truncation Error (LTE) ⌧ for a scheme is the residual of the scheme when the exact solution upxjq is
inserted in place of uj .

⌧j :“ pD`D´upxjq ´ fpxjqq

This is the error in the ODE statement at xj due to our discretization.

An exercise shows that,

⌧j “ ch2up4qpxjq ` Oph4q,

where c is an absolute constant.
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Consistency, II D03-S08(a)

The LTE, ⌧j , is actually a function on the grid.

A ‘good’ outcome would be that this grid function decays to 0 as h Ó 0.

Hence, our estimates will use the norm of the LTE:

⌧ “ p⌧1, . . . , ⌧M qT , }⌧}22 :“ h
Mÿ

j“1

|⌧j |2.

Note that M (the size of ⌧ ) scales like 1{h, and that the 2-norm is scaled by h. This scaling factor is sensible,

ª 1

0
⌧2pxqdx « h

Mÿ

j“1

⌧2pxjq,

where ⌧p¨q is a putative function representing the LTE function on the continuum r0, 1s.
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Consistency, II D03-S08(b)

The LTE, ⌧j , is actually a function on the grid.

A ‘good’ outcome would be that this grid function decays to 0 as h Ó 0.

Hence, our estimates will use the norm of the LTE:

⌧ “ p⌧1, . . . , ⌧M qT , }⌧}22 :“ h
Mÿ

j“1

|⌧j |2.

Note that M (the size of ⌧ ) scales like 1{h, and that the 2-norm is scaled by h. This scaling factor is sensible,

ª 1

0
⌧2pxqdx « h

Mÿ

j“1

⌧2pxjq,

where ⌧p¨q is a putative function representing the LTE function on the continuum r0, 1s.
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Consistency, III D03-S09(a)

Clearly a “small” LTE is desirable – a particular notion of “small” is called consistency.

Definition
We say that a numerical scheme is consistent if

lim
hÓ0

}⌧ }2 “ 0.

In our particular case, we have,

}⌧ }2 “ Oph2q hÓ0››Ñ 0,

hence our discretization is consistent.

Because we know that the LTE is Oph2q, we might also say that the scheme is consistent to second order.

Our use of the 2-norm in the definition of consistency is a choice – other norms are/can be useful in other situations.

Note that consistency does not immediately translate into accuracy of the computed numerical solution, though it
does suggest what we should expect.
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Consistency, III D03-S09(b)

Clearly a “small” LTE is desirable – a particular notion of “small” is called consistency.

Definition
We say that a numerical scheme is consistent if

lim
hÓ0

}⌧ }2 “ 0.

In our particular case, we have,

}⌧ }2 “ Oph2q hÓ0››Ñ 0,

hence our discretization is consistent.

Because we know that the LTE is Oph2q, we might also say that the scheme is consistent to second order.

Our use of the 2-norm in the definition of consistency is a choice – other norms are/can be useful in other situations.

Note that consistency does not immediately translate into accuracy of the computed numerical solution, though it
does suggest what we should expect.
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Consistency, III D03-S09(c)

Clearly a “small” LTE is desirable – a particular notion of “small” is called consistency.

Definition
We say that a numerical scheme is consistent if

lim
hÓ0

}⌧ }2 “ 0.

In our particular case, we have,

}⌧ }2 “ Oph2q hÓ0››Ñ 0,

hence our discretization is consistent.

Because we know that the LTE is Oph2q, we might also say that the scheme is consistent to second order.

Our use of the 2-norm in the definition of consistency is a choice – other norms are/can be useful in other situations.

Note that consistency does not immediately translate into accuracy of the computed numerical solution, though it
does suggest what we should expect.

A. Narayan (U. Utah – Math/SCI) Math 6620: FD for 1D stationary problems



Stability, I D03-S10(a)

In order to translate consistency into scheme accuracy, we will need the scheme to “behave well” for small h.
This is stability.

Recall our scheme is

Au “ f ` g0
h2

e1 ` g1
h2

eM ,

and that everything on the right hand side is an input parameter (f , g0, g1).

Thus, abstractly we can view our scheme as the input-to-output map,

f , g0, g1
A´1

›››Ñ u,

and hence we need A´1 to behave well.

Definition
We say that our scheme is stable if

››A´1
››
2

§ C for all h sufficiently small,

where C is independent of h. “Sufficiently small” means D h0 ° 0 so that the inequality holds @ h P p0, h0q.

Note that the size of A depends on h, and in particular goes to infinity as h goes to 0.
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Stability, I D03-S10(b)

In order to translate consistency into scheme accuracy, we will need the scheme to “behave well” for small h.
This is stability.

Recall our scheme is

Au “ f ` g0
h2

e1 ` g1
h2

eM ,

and that everything on the right hand side is an input parameter (f , g0, g1).

Thus, abstractly we can view our scheme as the input-to-output map,

f , g0, g1
A´1

›››Ñ u,

and hence we need A´1 to behave well.

Definition
We say that our scheme is stable if

››A´1
››
2

§ C for all h sufficiently small,

where C is independent of h. “Sufficiently small” means D h0 ° 0 so that the inequality holds @ h P p0, h0q.

Note that the size of A depends on h, and in particular goes to infinity as h goes to 0.
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Stability, I D03-S10(c)

In order to translate consistency into scheme accuracy, we will need the scheme to “behave well” for small h.
This is stability.

Recall our scheme is

Au “ f ` g0
h2

e1 ` g1
h2

eM ,

and that everything on the right hand side is an input parameter (f , g0, g1).

Thus, abstractly we can view our scheme as the input-to-output map,

f , g0, g1
A´1

›››Ñ u,

and hence we need A´1 to behave well.

Definition
We say that our scheme is stable if

››A´1
››
2

§ C for all h sufficiently small,

where C is independent of h. “Sufficiently small” means D h0 ° 0 so that the inequality holds @ h P p0, h0q.

Note that the size of A depends on h, and in particular goes to infinity as h goes to 0.
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Stability, II D03-S11(a)

We can verify stability for our scheme. Recall that,

A “ 1

h2

¨

˚̊
˚̊
˚̋

2 ´1
´1 2 ´1

´1 2 ´1
. . .

. . .
. . .

´1 2

˛

‹‹‹‹‹‚

One can explicitly compute the spectrum of this matrix:

Av “ �v, p�j ,vjq “
ˆ

4

h2
sin2 p⇡hj{2q , sinpxj⇡q

˙
, j P rMs

where x “ px1, . . . , xM qT .

Of particular interest is that the eigenvectors of A “look” similar to those of the second derivative operator u fiÑ ´u2.
(This suggests we’re not doing anything too crazy.)

How does this help with stability? We need to identify asymptotic behavior of }A}´1.

A. Narayan (U. Utah – Math/SCI) Math 6620: FD for 1D stationary problems





Stability, II D03-S11(b)

We can verify stability for our scheme. Recall that,

A “ 1

h2

¨

˚̊
˚̊
˚̋

2 ´1
´1 2 ´1

´1 2 ´1
. . .

. . .
. . .

´1 2

˛

‹‹‹‹‹‚

One can explicitly compute the spectrum of this matrix:

Av “ �v, p�j ,vjq “
ˆ

4

h2
sin2 p⇡hj{2q , sinpxj⇡q

˙
, j P rMs

where x “ px1, . . . , xM qT .

Of particular interest is that the eigenvectors of A “look” similar to those of the second derivative operator u fiÑ ´u2.
(This suggests we’re not doing anything too crazy.)

How does this help with stability? We need to identify asymptotic behavior of }A}´1.
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A linear algebraic interlude D03-S12(a)

We now review the following facts from linear algebra:
– If A P MˆN is any matrix, then it admits a singular value decomposition: there exist two unitary matrices

U P MˆM and V P NˆN , and a diagonal matrix ⌃ P MˆN , such that A “ U⌃V T . The diagonal
elements of ⌃ are t�juj , ordered such that �1 • �2 • ¨ ¨ ¨ • 0, are called the singular values of A.

– If A is an M ˆ M matrix, then }A}2 “ �1, where �1 is the largest singular value of A.
– If A is symmetric, then there exists an orthogonal matrix U and a diagonal matrix D, both real-valued, such

that

A “ UDUT .

– If A is both symmetric and invertible, then the diagonal elements of D are non-zero, and

A´1 “ UD´1UT .

– If A is symmetric, then

|�j | “ �j ,

where t�juj are the non-decreasing singular values of A, and t�juj are the eigenvalues of A, ordered such that
|�1| • |�2| • ¨ ¨ ¨ • |�M |.
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A linear algebraic interlude D03-S12(b)

We now review the following facts from linear algebra:
– If A P MˆN is any matrix, then it admits a singular value decomposition: there exist two unitary matrices

U P MˆM and V P NˆN , and a diagonal matrix ⌃ P MˆN , such that A “ U⌃V T . The diagonal
elements of ⌃ are t�juj , ordered such that �1 • �2 • ¨ ¨ ¨ • 0, are called the singular values of A.

– If A is an M ˆ M matrix, then }A}2 “ �1, where �1 is the largest singular value of A.
– If A is symmetric, then there exists an orthogonal matrix U and a diagonal matrix D, both real-valued, such

that

A “ UDUT .

– If A is both symmetric and invertible, then the diagonal elements of D are non-zero, and

A´1 “ UD´1UT .

– If A is symmetric, then

|�j | “ �j ,

where t�juj are the non-decreasing singular values of A, and t�juj are the eigenvalues of A, ordered such that
|�1| • |�2| • ¨ ¨ ¨ • |�M |.

A. Narayan (U. Utah – Math/SCI) Math 6620: FD for 1D stationary problems



A linear algebraic interlude D03-S12(c)

We now review the following facts from linear algebra:
– If A P MˆN is any matrix, then it admits a singular value decomposition: there exist two unitary matrices

U P MˆM and V P NˆN , and a diagonal matrix ⌃ P MˆN , such that A “ U⌃V T . The diagonal
elements of ⌃ are t�juj , ordered such that �1 • �2 • ¨ ¨ ¨ • 0, are called the singular values of A.

– If A is an M ˆ M matrix, then }A}2 “ �1, where �1 is the largest singular value of A.
– If A is symmetric, then there exists an orthogonal matrix U and a diagonal matrix D, both real-valued, such

that

A “ UDUT .

– If A is both symmetric and invertible, then the diagonal elements of D are non-zero, and

A´1 “ UD´1UT .

– If A is symmetric, then

|�j | “ �j ,

where t�juj are the non-decreasing singular values of A, and t�juj are the eigenvalues of A, ordered such that
|�1| • |�2| • ¨ ¨ ¨ • |�M |.
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A linear algebraic interlude D03-S12(d)

We now review the following facts from linear algebra:
– If A P MˆN is any matrix, then it admits a singular value decomposition: there exist two unitary matrices

U P MˆM and V P NˆN , and a diagonal matrix ⌃ P MˆN , such that A “ U⌃V T . The diagonal
elements of ⌃ are t�juj , ordered such that �1 • �2 • ¨ ¨ ¨ • 0, are called the singular values of A.

– If A is an M ˆ M matrix, then }A}2 “ �1, where �1 is the largest singular value of A.
– If A is symmetric, then there exists an orthogonal matrix U and a diagonal matrix D, both real-valued, such

that

A “ UDUT .

– If A is both symmetric and invertible, then the diagonal elements of D are non-zero, and

A´1 “ UD´1UT .

– If A is symmetric, then

|�j | “ �j ,

where t�juj are the non-decreasing singular values of A, and t�juj are the eigenvalues of A, ordered such that
|�1| • |�2| • ¨ ¨ ¨ • |�M |.
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A linear algebraic interlude D03-S12(e)

We now review the following facts from linear algebra:
– If A P MˆN is any matrix, then it admits a singular value decomposition: there exist two unitary matrices

U P MˆM and V P NˆN , and a diagonal matrix ⌃ P MˆN , such that A “ U⌃V T . The diagonal
elements of ⌃ are t�juj , ordered such that �1 • �2 • ¨ ¨ ¨ • 0, are called the singular values of A.

– If A is an M ˆ M matrix, then }A}2 “ �1, where �1 is the largest singular value of A.
– If A is symmetric, then there exists an orthogonal matrix U and a diagonal matrix D, both real-valued, such

that

A “ UDUT .

– If A is both symmetric and invertible, then the diagonal elements of D are non-zero, and

A´1 “ UD´1UT .

– If A is symmetric, then

|�j | “ �j ,

where t�juj are the non-decreasing singular values of A, and t�juj are the eigenvalues of A, ordered such that
|�1| • |�2| • ¨ ¨ ¨ • |�M |.
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Stability, III D03-S13(a)
We can now finish our stability verification:

Av “ �v, p�j ,vjq “
ˆ

4

h2
sin2 p⇡jh{2q , sinpxj⇡q

˙
, j P rMs

where x “ px1, . . . , xM qT .

Since A is invertible and symmetric:

}A´1}2 “ �1pA´1q “ max
j

|�jpA´1q| “ max
j

1

|�jpAq| “ 1

minj |�jpAq|

“ 1
4
h2 sin2ph⇡{2q “ h2

4 sin2ph⇡{2q

We are interested in the h Ó 0 behavior of this quantity. Since,

sinpxq « x as x Ó 0,

we conclude that

}A´1}2 „ h2

4h2⇡2{4 “ 1

⇡2

hence our scheme is stable since }A´1}2 § C for small h.
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Stability, III D03-S13(b)
We can now finish our stability verification:

Av “ �v, p�j ,vjq “
ˆ

4

h2
sin2 p⇡jh{2q , sinpxj⇡q

˙
, j P rMs

where x “ px1, . . . , xM qT .

Since A is invertible and symmetric:

}A´1}2 “ �1pA´1q “ max
j

|�jpA´1q| “ max
j

1

|�jpAq| “ 1

minj |�jpAq|

“ 1
4
h2 sin2ph⇡{2q “ h2

4 sin2ph⇡{2q

We are interested in the h Ó 0 behavior of this quantity. Since,

sinpxq « x as x Ó 0,

we conclude that

}A´1}2 „ h2

4h2⇡2{4 “ 1

⇡2

hence our scheme is stable since }A´1}2 § C for small h.
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Convergence, I D03-S14(a)
We are finally in a position to consider our original question: is our scheme accurate? The answer to this question
will quantify how large the error e is:

e “ pe1, . . . , eM qT , ej :“ uj ´ upxjq.

Definition
A scheme is convergent if limhÓ0 }e}2 “ 0.

This is a rather strong statement, since as h Ó 0 we require small error at a larger number of spatial points.

We can now show the power of linearity for this problem. Define a vector containing evaluations of the exact
solution:

U “ pupx1q, . . . , upxM qqT .

Generally, U ‰ u. Now note that,

Au “ f ` g0
h2

e1 ` g1
h2

eM (Definition of the scheme)

AU “ f ` g0
h2

e1 ` g1
h2

eM ` ⌧ , (Consistency)
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Convergence, I D03-S14(b)
We are finally in a position to consider our original question: is our scheme accurate? The answer to this question
will quantify how large the error e is:

e “ pe1, . . . , eM qT , ej :“ uj ´ upxjq.

Definition
A scheme is convergent if limhÓ0 }e}2 “ 0.

This is a rather strong statement, since as h Ó 0 we require small error at a larger number of spatial points.

We can now show the power of linearity for this problem. Define a vector containing evaluations of the exact
solution:

U “ pupx1q, . . . , upxM qqT .

Generally, U ‰ u. Now note that,

Au “ f ` g0
h2

e1 ` g1
h2

eM (Definition of the scheme)

AU “ f ` g0
h2

e1 ` g1
h2

eM ` ⌧ , (Consistency)
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Convergence, II D03-S15(a)

Therefore:

Ae “ Apu ´ Uq “ ´⌧ ,

and so,

}e}2 “ }A´1⌧ } § }A´1} }⌧ } § COph2q,

where the last inequality uses both stability and consistency.

We have just proven the following:

Theorem
The second-order difference scheme is convergent, and in particular is second-order convergent.

The “second-order convergent” part means }e}2 “ Oph2q.

In this particular case, the order of the LTE coincides with the order of convergence. This is not always the case.
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Convergence, II D03-S15(b)

Therefore:

Ae “ Apu ´ Uq “ ´⌧ ,

and so,

}e}2 “ }A´1⌧ } § }A´1} }⌧ } § COph2q,

where the last inequality uses both stability and consistency.

We have just proven the following:

Theorem
The second-order difference scheme is convergent, and in particular is second-order convergent.

The “second-order convergent” part means }e}2 “ Oph2q.

In this particular case, the order of the LTE coincides with the order of convergence. This is not always the case.
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Convergence, II D03-S15(c)

Therefore:

Ae “ Apu ´ Uq “ ´⌧ ,

and so,

}e}2 “ }A´1⌧ } § }A´1} }⌧ } § COph2q,

where the last inequality uses both stability and consistency.

We have just proven the following:

Theorem
The second-order difference scheme is convergent, and in particular is second-order convergent.

The “second-order convergent” part means }e}2 “ Oph2q.

In this particular case, the order of the LTE coincides with the order of convergence. This is not always the case.
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Convergence for linear FD methods D03-S16(a)

We have drawn an outline for how to establish convergence for FD schemes.

Many details are specific to the problem + discretization at hand, but the broad strokes are somewhat general:
– Consistency : The local truncation error is related mesh spacing h, ideally polynomially related.
– Stability : The scheme behaves in a well-behaved way for small mesh spacing h.
– Linearity : The scheme residual when the global error is plugged in is equal to the local truncation error.

Thus, the following idea is true for linear FD schemes:

Stability ` Consistency “ Convergence

This is called the Lax Equivalence Theorem, or the Lax-Richtmyer Theorem.

One might really consider this a “meta-theorem”, as the practitioner must decide on the precise definition of what
consistency and stability mean.

(Recall: we had to choose norms for stability and consistency definitions, and our stability definition involved a
matrix that explicitly depends on the differential equation and the scheme.)
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Convergence for linear FD methods D03-S16(b)

We have drawn an outline for how to establish convergence for FD schemes.

Many details are specific to the problem + discretization at hand, but the broad strokes are somewhat general:
– Consistency : The local truncation error is related mesh spacing h, ideally polynomially related.
– Stability : The scheme behaves in a well-behaved way for small mesh spacing h.
– Linearity : The scheme residual when the global error is plugged in is equal to the local truncation error.

Thus, the following idea is true for linear FD schemes:

Stability ` Consistency “ Convergence

This is called the Lax Equivalence Theorem, or the Lax-Richtmyer Theorem.

One might really consider this a “meta-theorem”, as the practitioner must decide on the precise definition of what
consistency and stability mean.

(Recall: we had to choose norms for stability and consistency definitions, and our stability definition involved a
matrix that explicitly depends on the differential equation and the scheme.)
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Convergence for linear FD methods D03-S16(c)

We have drawn an outline for how to establish convergence for FD schemes.

Many details are specific to the problem + discretization at hand, but the broad strokes are somewhat general:
– Consistency : The local truncation error is related mesh spacing h, ideally polynomially related.
– Stability : The scheme behaves in a well-behaved way for small mesh spacing h.
– Linearity : The scheme residual when the global error is plugged in is equal to the local truncation error.

Thus, the following idea is true for linear FD schemes:

Stability ` Consistency “ Convergence

This is called the Lax Equivalence Theorem, or the Lax-Richtmyer Theorem.

One might really consider this a “meta-theorem”, as the practitioner must decide on the precise definition of what
consistency and stability mean.

(Recall: we had to choose norms for stability and consistency definitions, and our stability definition involved a
matrix that explicitly depends on the differential equation and the scheme.)
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Some generalizations D03-S17(a)

Much of previous technique can be generalized to more complicated setups in 1D:
– Non-uniform grids (derive non-uniform versions of D˘,0)
– Neumann/Robin boundary conditions (discretization of boundary conditions)
– Different error norms (e.g., L8 norm error)
– Non-homogeneous diffusion: ppxqu1pxqq1 “ fpxq
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