
Math 6620: Analysis of Numerical Methods, II
Background and Review: PDEs

Akil Narayan1

1Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

A. Narayan (U. Utah – Math/SCI) Math 6620: Intro

 



“Prerequisites” D02-S02(a)

Several topics are background for this course:
– (Numerical) linear algebra
– Calculus
– “Basic” knowledge of ordinary/partial differential equations
– Some programming experience

From the previous course, 6610, you’ll be expected to have familiarity with:
– linear algebraic factorizations
– (polynomial) truncation error and numerical approximation (e.g., of derivatives)
– quadrature rules
– computational considerations for solving linear and nonlinear systems

We’ll spend some time briefly reviewing (small) portions of these.
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Notation D02-S03(a)

When considering PDEs, we’ll generally work over d-dimensional physical space, d “ 1, 2, 3, with variables x, y, z.
We’ll use t as the time variable for time-dependent problems.

Generally we’ll refer to state (unknown) functions as u, e.g.,

upxq, upx, yq, upt, xq, upt, x, y, zq

(Partial) Derivatives are abbreviated with subscripts,

Bu
Bt “ ut,

B3u

Bx3
“ uxxx.
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Notation D02-S03(b)

When considering PDEs, we’ll generally work over d-dimensional physical space, d “ 1, 2, 3, with variables x, y, z.
We’ll use t as the time variable for time-dependent problems.

Generally we’ll refer to state (unknown) functions as u, e.g.,

upxq, upx, yq, upt, xq, upt, x, y, zq

(Partial) Derivatives are abbreviated with subscripts,

Bu
Bt “ ut,

B3u

Bx3
“ uxxx.
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Basic differential equations D02-S04(a)

Ordinary or partial differential equations (ODEs/PDEs) are mathematical laws governing an unknown u that model
some phenomenon.

ut “ uxx, (Heat diffusion in 1D)

utt “ uxx, (Wave motion in 1D)

uxx ` uyy “ 0, (Steady-state temperature in 2D)

Differential equations prescribe incomplete knowledge of u without initial/boundary conditions.

Differential equations can have input parameters, e.g., a scalar coefficient or a function.

uxx “ fpxq, ut “ uxx,

At a high level, one can view the task of solving a differential equation as a map from inputs (e.g., f , ) to outputs
(the solution u).
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Basic differential equations D02-S04(b)

Ordinary or partial differential equations (ODEs/PDEs) are mathematical laws governing an unknown u that model
some phenomenon.

ut “ uxx, (Heat diffusion in 1D)

utt “ uxx, (Wave motion in 1D)

uxx ` uyy “ 0, (Steady-state temperature in 2D)

Differential equations prescribe incomplete knowledge of u without initial/boundary conditions.

Differential equations can have input parameters, e.g., a scalar coefficient or a function.

uxx “ fpxq, ut “ uxx,

At a high level, one can view the task of solving a differential equation as a map from inputs (e.g., f , ) to outputs
(the solution u).
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Well-posedness D02-S05(a)

We can view the task of solving PDEs as a function from inputs to outputs:

Inputs, e.g., f , 
Solution map›››››››››Ñ Solution u, the “output”

It is reasonable that we should really only try to solve a PDE if we know that the above procedure is well-posed.

The strict definition of a well-posed PDE can depend on the context, and it’s frequently easier to define
non-well-posed (“ill-posed”) problems.
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Well-posedness D02-S05(b)

We can view the task of solving PDEs as a function from inputs to outputs:

Inputs, e.g., f , 
Solution map›››››››››Ñ Solution u, the “output”

It is reasonable that we should really only try to solve a PDE if we know that the above procedure is well-posed.

The strict definition of a well-posed PDE can depend on the context, and it’s frequently easier to define
non-well-posed (“ill-posed”) problems.

For example, non-existence:

A PDE is ill-posed if for a given input, there is no solution u. E.g.,

ut “ ux, x P p0, 2⇡q, t ° 0

upx, 0q “ sinx, x P r0, 2⇡s,
up0, tq “ 0, t ° 0

up2⇡, tq “ 0, t ° 0.
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Well-posedness D02-S05(c)

We can view the task of solving PDEs as a function from inputs to outputs:

Inputs, e.g., f , 
Solution map›››››››››Ñ Solution u, the “output”

It is reasonable that we should really only try to solve a PDE if we know that the above procedure is well-posed.

The strict definition of a well-posed PDE can depend on the context, and it’s frequently easier to define
non-well-posed (“ill-posed”) problems.

For example, non-uniqueness:

A PDE is ill-posed if for a given input, there are multiple solutions u. E.g.,

u2 “ sinx, x P p0, 2⇡q
u1p0q “ 0,

u1p2⇡q “ 0.
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Well-posedness D02-S05(d)

We can view the task of solving PDEs as a function from inputs to outputs:

Inputs, e.g., f , 
Solution map›››››››››Ñ Solution u, the “output”

It is reasonable that we should really only try to solve a PDE if we know that the above procedure is well-posed.

The strict definition of a well-posed PDE can depend on the context, and it’s frequently easier to define
non-well-posed (“ill-posed”) problems.

For example, ill-behaved properties:

A PDE is ill-posed if it depends on input parameters in “ill-behaved” ways. E.g.,

ut “ ´uxx, x P p0, 2⇡q, t ° 0

upx, 0q “ fpxq, x P r0, 2⇡s,
up0, tq “ 0, t ° 0

up2⇡, tq “ 0. t ° 0

The solution u at arbitrarily small time t ° 0 behaves uncontrollably with respect to infinitesimal perturbations of f .
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Numerical methods: overall goals D02-S06(a)

“Most” PDEs cannot be analytically solved /

Our main strategy for recourse is to approximate the solution with a numerically computed one.

We will always assume that a given ODE/PDE is well-posed.

If it’s not, why bother to compute an approximate solution to a non-existent/non-unique/ill-behaved exact solution?
(Although, mathematical/numerical methods for ill-posed problems are of significant intereset....)

For numerical methods, we typically want the following things:
– Stability: The method does not “blow up” given reasonable inputs
– Accuracy: The solution computed by the method is “close” to the exact solution.
– Efficiency: The method does not take too much computational effort to compute a solution, and/or the

memory and operation complexity required to compute a solution can be estimated.
– Simple: The method can be implemented and deployed with relative ease.
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Numerical methods: overall goals D02-S06(b)

“Most” PDEs cannot be analytically solved /

Our main strategy for recourse is to approximate the solution with a numerically computed one.

We will always assume that a given ODE/PDE is well-posed.

If it’s not, why bother to compute an approximate solution to a non-existent/non-unique/ill-behaved exact solution?
(Although, mathematical/numerical methods for ill-posed problems are of significant intereset....)

For numerical methods, we typically want the following things:
– Stability: The method does not “blow up” given reasonable inputs
– Accuracy: The solution computed by the method is “close” to the exact solution.
– Efficiency: The method does not take too much computational effort to compute a solution, and/or the

memory and operation complexity required to compute a solution can be estimated.
– Simple: The method can be implemented and deployed with relative ease.
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Summaries, necessarily simplistic D02-S07(a)

Finite difference methods:
+ Easy, simple, transparent
– Relatively inflexible order of accuracy
– Difficult for complex geometries
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Summaries, necessarily simplistic D02-S07(b)

Fourier/spectral methods:
+ Conceptually simple
+ “Infinite order” accuracy
– Very difficult for complex geometries
– Can suffer instability

[Geek3 / CC-BY-SA-3.0]
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Summaries, necessarily simplistic D02-S07(c)

Finite volume methods:
+ Solid mathematical theory
+ Can model non-smooth solutions
– Low order accuracy

Finite Volume Methods for Hyperbolic Problems

RANDALL J. LEVEQUE
University of Washington

Randall J. LeVeque (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press. ISBN: 978-1-139-43418-8

(We won’t cover these in this class.)
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Summaries, necessarily simplistic D02-S07(d)
Finite element methods:
+ Solid mathematical theory
+ High-order and geometric flexibility
– Can involve technical mathematics
– Can be complicated to implement

[Zureks / CC-BY-SA-3.0]

(We won’t cover these in this class.)
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