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“Prerequisites” D02-S02(a)

Several topics are background for this course:
— (Numerical) linear algebra

— Calculus
— “Basic” knowledge of ordinary/partial differential equations

— Some programming experience

From the previous course, 6610, you'll be expected to have familiarity with:
— linear algebraic factorizations

— (polynomial) truncation error and numerical approximation (e.g., of derivatives)

— quadrature rules

— computational considerations for solving linear and nonlinear systems

We'll spend some time briefly reviewing (small) portions of these.
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Notation D02-S03(a)

When considering PDEs, we'll generally work over d-dimensional physical space, d = 1, 2, 3, with variables z, y, z.
We'll use t as the time variable for time-dependent problems.

Generally we'll refer to state (unknown) functions as u, e.g.,

u(x), u(x,y), u(t,x), u(t,z,y,z)
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Notation D02-S03(b)

When considering PDEs, we'll generally work over d-dimensional physical space, d = 1, 2, 3, with variables z, y, z.
We'll use t as the time variable for time-dependent problems.

Generally we'll refer to state (unknown) functions as u, e.g.,

u(x), u(x,y), u(t,x), u(t,z,y,z)

(Partial) Derivatives are abbreviated with subscripts,

ou o3u
g = Ut, a? = Ugxzxx-
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Basic differential equations

D02-504(a)

Ordinary or partial differential equations (ODEs/PDEs) are mathematical laws governing an unknown u that model

some phenomenon.
(Heat diffusion in 1D)
(Wave motion in 1D)
(Steady-state temperature in 2D)

Ut = Ugx,
Utt = Ugx,

Ugxy + Uyy = 0,

Differential equations prescribe incomplete knowledge of u without initial/boundary conditions.
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Basic differential equations D02-S04(b)

Ordinary or partial differential equations (ODEs/PDEs) are mathematical laws governing an unknown u that model
some phenomenon.

Ut = Ugpz, (Heat diffusion in 1D)
Utt = Ugg, (Wave motion in 1D)
Uzz + Uyy = 0, (Steady-state temperature in 2D)

Differential equations prescribe incomplete knowledge of u without initial/boundary conditions.
Differential equations can have input parameters, e.g., a scalar coefficient or a function.

At a high level, one can view the task of solving a differential equation as a map from inputs (e.g., f, k) to outputs
(the solution u).
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Well-posedness D02-S05(a)

We can view the task of solving PDEs as a function from inputs to outputs:

Solution map

Inputs, e.g., f, &

Solution u, the “output”
It is reasonable that we should really only try to solve a PDE if we know that the above procedure is well-posed.

The strict definition of a well-posed PDE can depend on the context, and it's frequently easier to define
non-well-posed (“ill-posed™) problems.
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Well-posedness D02-S05(b)

We can view the task of solving PDEs as a function from inputs to outputs:

Solution map

Inputs, e.g., f, &

Solution u, the “output”
It is reasonable that we should really only try to solve a PDE if we know that the above procedure is well-posed.

The strict definition of a well-posed PDE can depend on the context, and it's frequently easier to define
non-well-posed (“ill-posed™) problems.

For example, non-existence:

A PDE is ill-posed if for a given input, there is no solution u. E.g.,

Ut = Ug, x € (0,2m), t >0
u(zx,0) = sinz, x € [0, 27],
u(0, ): t>0
u(2m,t) = t > 0.
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Well-posedness D02-S05(c¢)

We can view the task of solving PDEs as a function from inputs to outputs:

Solution map

Inputs, e.g., f, & Solution u, the “output”
It is reasonable that we should really only try to solve a PDE if we know that the above procedure is well-posed.

The strict definition of a well-posed PDE can depend on the context, and it's frequently easier to define
non-well-posed (“ill-posed™) problems.

For example, non-uniqueness:

A PDE is ill-posed if for a given input, there are multiple solutions u. E.g.,

u” = sinzx, x € (0,2m)
u’(0) = 0,
u' (27) = 0.

b= Loy FBessx  4=-] B=g
Ul = - gy 4 ¢ + 3%
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Well-posedness D02-S05(d)

We can view the task of solving PDEs as a function from inputs to outputs:

Solution map

Inputs, e.g., f, &

Solution u, the “output”
It is reasonable that we should really only try to solve a PDE if we know that the above procedure is well-posed.

The strict definition of a well-posed PDE can depend on the context, and it's frequently easier to define
non-well-posed (“ill-posed™) problems.

For example, ill-behaved properties:
A PDE is ill-posed if it depends on input parameters in “ill-behaved” ways. E.g.,

Ut = —Ugy, x € (0,2m), t >0

u(z, 0) f(x), z € [0, 2], Hx ’:ﬁg(\/n ?CJ né i/
u(0,t) = 0, t>0 /\M
u(27,t) t>0 ’ =0 bmt /// //E,{[ {L)//

The solution w at arbitrarily small time ¢ > 0 behaves uncontrollably with respect to infinitesimal perturbatlons of f.
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Numerical methods: overall goals D02-S06(a)

“Most” PDEs cannot be analytically solved ®

Our main strategy for recourse is to approximate the solution with a numerically computed one.
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Numerical methods: overall goals D02-S06(b)

“Most” PDEs cannot be analytically solved ®

Our main strategy for recourse is to approximate the solution with a numerically computed one.

We will always assume that a given ODE/PDE is well-posed.

If it’s not, why bother to compute an approximate solution to a non-existent/non-unique/ill-behaved exact solution?
(Although, mathematical /numerical methods for ill-posed problems are of significant intereset....)

For numerical methods, we typically want the following things:
— Stability: The method does not “blow up” given reasonable inputs
— Accuracy: The solution computed by the method is “close” to the exact solution.

— Efficiency: The method does not take too much computational effort to compute a solution, and/or the
memory and operation complexity required to compute a solution can be estimated.

— Simple: The method can be implemented and deployed with relative ease.
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Summaries, necessarily simplistic D02-S07(a)

Finite difference methods:
+ Easy, simple, transparent
— Relatively inflexible order of accuracy

— Difficult for complex geometries
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Summaries, necessarily simplistic

Fourier/spectral methods:
+ Conceptually simple
+ “Infinite order” accuracy
— Very difficult for complex geometries

— Can suffer instability
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Summaries, necessarily simplistic D02-S07(c)

Finite volume methods:
+ Solid mathematical theory
+ Can model non-smooth solutions

— Low order accuracy

------
inunuag

xxxxx

Randall J. LeVeque (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press. ISBN: 978-1-139-43418-8

(We won't cover these in this class.)
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Summaries, necessarily simplistic D02-S07(d)

Finite element methods:
+ Solid mathematical theory
+ High-order and geometric flexibility
— Can involve technical mathematics
— Can be complicated to implement

[Zureks / CC-BY-SA-3.0]

(We won't cover these in this class.)
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