Math 6620: Analysis of Numerical Methods, II

Akil Narayan¹

¹Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

Math 6620: Analysis of Numerical Methods, II

- In-person (unless otherwise specified)
- Grading based on \sim biweekly homework assignments and 2 exams
- Core topics covered are finite-difference methods for PDEs, time-differencing for IVPs, global/spectral methods

Most non-technical information in what follows is on the syllabus.

Analysis of Numerical Methods, II, or "Basics of numerical solutions to O/PDEs"

Major goals (and warnings) for this class:

- Provide an overview/survey of basic numerical methods
- Not to provide substantial in-depth and detailed knowledge of solving particular PDEs

Analysis of Numerical Methods, II, or "Basics of numerical solutions to O/PDEs"

Major goals (and warnings) for this class:

- Provide an overview/survey of basic numerical methods
- Not to provide substantial in-depth and detailed knowledge of solving particular PDEs
- Give you general exposure of existing mathematics, tools, and formalisms
- Present you with resources where you could find more detailed information

Analysis of Numerical Methods, II, or "Basics of numerical solutions to O/PDEs"

Major goals (and warnings) for this class:

- Provide an overview/survey of basic numerical methods
- Not to provide substantial in-depth and detailed knowledge of solving particular PDEs
- Give you general exposure of existing mathematics, tools, and formalisms
- Present you with resources where you could find more detailed information
- Some (important!) mathematical and algorithmic minutiae are glossed over
- Furnish experience for implementing numerical schemes

High-level logistics

Course meetings:

- MWF @ 12:55 1:45pm, HEB 2002
- Can be virtual (Zoom) on request
- Attendance not required
- $-\,$ I'll use course slides exclusively these will be uploaded to the course webpage after class

Course meetings:

- MWF @ 12:55 1:45pm, HEB 2002
- Can be virtual (Zoom) on request
- Attendance not required
- I'll use course slides exclusively these will be uploaded to the course webpage after class

Grading for the course:

- Grade exclusively based on exams + homework assignments
- Two exams: one midterm (Feb 28), and one final exam (April 30)
- Exams are standard written exams, no extra material allowed

A rough outline of what we'll discuss in the "core" topics:

- Background: Basic theory of linear partial differential equations
- Examples, and elliptic, parabolic, hyperbolic problems
- Desiderata for numerical schemes stability, convergence, efficiency
- Finite-difference methods
- Numerical methods for initial value problems
- Global Fourier and spectral methods

Throughout, we'll discuss theory, algorithms, and software considerations.

Course references

There is no formal textbook for this course.

I'll provide slides (like these) that are a fairly detailed outline of topics covered. I apologize in advance for the highly probable typos and mistakes

There are numerous textbooks that I'll draw from for material, and I'll identify appropriate texts and chapter/section numbers during class meetings:

Randall J. LeVeque (2007). Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM. ISBN: 978-0-89871-783-9

Hans Petter Langtangen and Svein Linge (2017). Finite Difference Computing with PDEs: A Modern Software Approach. Springer. ISBN: 978-3-319-55456-3

Heinz-Otto Kreiss, Joseph Oliger, and Bertil Gustafsson (2013). *Time-Dependent Problems and Difference Methods*. John Wiley & Sons. ISBN: 978-1-118-54852-3

Uri M. Ascher and Linda R. Petzold (1998). Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM. ISBN: 978-1-61197-139-2

Claudio Canuto et al. (2011). Spectral Methods: Fundamentals in Single Domains. 1st ed. 2006. Corr. 4th printing 2010 edition. Berlin ; New York: Springer. ISBN: 978-3-540-30725-9

Jie Shen, Tao Tang, and Li-Lian Wang (2011). *Spectral Methods: Algorithms, Analysis and Applications*. Springer Science & Business Media. ISBN: 978-3-540-71041-7

Jan S. Hesthaven, Sigal Gottlieb, and David Gottlieb (2007). *Spectral Methods for Time-Dependent Problems*. Cambridge University Press. ISBN: 0-521-79211-8

Homeworks:

- Due approximately every 2 weeks
- Exercises with theory/written and coding components
- Provide direct templates for exam problems
- You are encouraged to work in groups, but each person must craft and submit individual work

Homeworks:

- Due approximately every 2 weeks
- Exercises with theory/written and coding components
- Provide direct templates for exam problems
- You are encouraged to work in groups, but each person must craft and submit individual work

Exams: 2 in-class exams

- Midterm exam: Wednesday, Feb 28
- Final exam: Tuesday, April 30

This is a qualifying exam course for the Mathematics PhD track.

A grade of A will earn you a "High pass" for the corresponding qualifying exam.

A grade of A- or B+ will earn you a "Pass" for the corresponding qualifying exam.

The grad bulletin is the authority on this: http://www.math.utah.edu/dept/gradbull.pdf

<u>General class communication</u>: email is the best way to contact me outside of class. I will send any general announcements through email.

If you are <u>not</u> registered for this class but wish to attend, please send me an email to request that I put you on the email list.

<u>General class communication</u>: email is the best way to contact me outside of class. I will send any general announcements through email.

If you are <u>not</u> registered for this class but wish to attend, please send me an email to request that I put you on the email list. Generally, I will post most things to the public-facing webpage, .

Protected data, like grades and class Zoom recordings (if any), will be posted to Canvas.

<u>General class communication</u>: email is the best way to contact me outside of class. I will send any general announcements through email.

If you are <u>not</u> registered for this class but wish to attend, please send me an email to request that I put you on the email list. Generally, I will post most things to the public-facing webpage, .

Protected data, like grades and class Zoom recordings (if any), will be posted to Canvas.

See the syllabus for detailed information and policies on student integrity, inclusivity, discrimination/harrassment, social equity, the English language medium, undocumented student support, student veterans, ADA, student wellness, UCC, sexual misconduct, campus safety, and the Office of the Dean of Students.

Approximate calendar

Semester calendar

(Subject to change!)

Day	Date	Topic
Monday	January 8, 2024	Hello
Wednesday	January 10, 2024	Basic PDE concepts
Friday	January 12, 2024	Finite differences for 1D Poisson problems
Monday	January 15, 2024	<u>No class</u> : Margin Luther King Jr. Day
Wednesday	January 17, 2024	Finite differences for 1D Poisson problems
Friday	January 19, 2024	Finite differences for multidimensional Poisson
Monday	January 22, 2024	problems Finite differences for multidimensional Poisson problems
Wednesday	January 24, 2024	Initial value problems, I
Friday	January 26, 2024	Initial value problems, II
Monday	January 29, 2024	Initial value problems, III
Wednesday	January 31, 2024	Multi-stage methods, I
Friday	February 2, 2024	Multi-stage methods, II
Monday	February 5, 2024	Multi-step methods, I
Wednesday	February 7, 2024	Multi-step methods, II
Friday	February 9, 2024	Multi-step methods, III
Monday	February 12, 2024	Time-stepping miscellany
Wednesday	February 14, 2024	Stability + well-posedness for linear PDEs
Friday	February 16, 2024	Parabolic equations, I
Monday	February 19, 2024	<u>No class</u> : Presidents Day
Wednesday	February 21, 2024	Parabolic equations, II
Friday	February 23, 2024	Parabolic equations, III
Monday	February 26, 2024	Von Neumann stability
Wednesday	February 28, 2024	<u>Midterm Exam</u>
Friday	March 1, 2024	<u>No class</u>
Monday	March 4, 2024	<u>No class</u> : Spring break
Wednesday	March 6, 2024	<u>No class</u> : Spring break
Friday	March 8, 2024	<u>No class</u> : Spring break
Monday	March 11, 2024	Fourier series, I
Wednesday	March 13, 2024	Fourier series, II
Friday	March 15, 2024	Fourier interpolation
Monday	March 18, 2024	Non-smooth problems
Wednesday	March 20, 2024	Weak solutions
Friday	March 22, 2024	Weighted residual methods
Monday	March 25, 2024	Fourier Galerkin methods
Wednesday	March 27, 2024	Fourier collocation methods
Friday	March 29, 2024	Time-dependent Fourier spectral methods, I
Monday	April 1, 2024	Time-dependent Fourier spectral methods, II
Wednesday	April 3, 2024	Orthogonal polynomials, I
Friday	April 5, 2024	Orthogonal polynomials, II
Monday	April 8, 2024	Polynomial spectral methods, I
Wednesday	April 10, 2024	Polynomial spectral methods, II
Friday	April 12, 2024	Polynomial spectral methods, III
Monday	April 15, 2024	Buffer day
Wednesday	April 17, 2024	Buffer day
Friday	April 19, 2024	Buffer day
Monday	April 22, 2024	Review
Wednesday	April 24, 2024	Reading day
Tu k .	Apr 31, 2024 1947-3pm	FINAL EAAM

References I

