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MATH 6620 – Section 001 – Spring 2024
Homework 5

Fourier Series and time-dependent problems

Due Friday, April 5, 2024

Submit your solutions online through Gradescope.

1. (Hyperbolic systems)
a. A linear PDE,

ut +Aux = 0,

governing the vector-valued solution u(x, t) ∈ Rm, is called hyperbolic if A is diagonal-
izable and λ(A) ⊂ R, with λ(A) denoting the spectrum of A. Assuming this PDE is
hyperbolic, and using an equispaced grid in time and space, derive an implementable
version of the upwind scheme for this problem, where ut is discretized as D+un

j . You
may ignore boundary conditions.

b. Derive and state a CFL condition for your upwind scheme.
c. Consider a nonlinear PDE,

ut + f(u)x = 0,

where f : Rm → R
m, and again we ignore boundary conditions. Propose a definition

of a hyperbolic PDE in this context, and identify an upwind-like numerical scheme on
an equidistant time and space mesh. (Again, discretize ut ≈ D+un

j .) What is the CFL
condition for your scheme?

2. (Hyperbolic systems in two spatial dimensions) Consider a linear system of PDEs of the
form,

ut +Aux +Buy = 0,

for the unknown u(x, y, t) ∈ R
m, where A,B ∈ R

m×m are given. Assume this system is
hyperbolic, meaning that for every α, β ∈ R, then αA+βB is diagonalizable with λ(αA+βB) ⊂
R. We will use the abbreviation x = (x, y)T ∈ R2.

a. Determine plane wave solutions: let n ∈ R2 satisfying ∥n∥2 = 1 be a given vector, and
assume some initial data u(x, y, 0) = u0(n · x). (Note that u0 is a function of a scalar
input.) Ignoring boundary conditions, determine the solution u(x, y, t).

b. Assume further that A and B are symmetric matrices. Consider discretizing this PDE
on an equidistant spatial grid on a square: hx > 0 and hy > 0 are the grid spacing in the
x- and y-directions, respectively. Again, assume the discretization ut ≈ D+un

i,j , where
un
i,j ≈ u(xi, yj , tn). Using plane waves as motivation, derive a CFL condition (a condition

on the timestep k) for such a discretization. You may assume that spatial derivatives
are approximated using the stencil involving uni±1,j±1 and that the numerical domain of
dependence is the convex hull of the stencil points (as in the one-dimensional case).
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3. (Finite differences for non-smooth problems) Consider Burgers’ equation:

ut + f(u)x = 0, f(u) =
u2

2
, (x, t) ∈ [−π, π]× (0, T ].

where we will take T = 1.0. Supplement this PDE with the boundary conditions,

u(±π, t) = u(±π, 0),

where the initial condition function u(·, 0) will be specified below. Note that for smooth u,
then f(u)x = uux. Based on this observation, and using an equidistant grid in both space and
time, we will consider two schemes for this PDE:

Scheme A : D+unj +D0f(u
n
j ) = 0,

Scheme B : D+unj + unjD0u
n
j = 0.

Numerically test these schemes for solving the PDE up to time t = T with the following three
initial data:

u(x, 0) = u1(x) = − sin(x).

u(x, 0) = u2(x) =

{
1, x ≤ 0
0, x > 0

u(x, 0) = u3(x) =

{
0, x ≤ 0
1, x > 0

Based on the experiments above, which scheme would you prefer to use for each example, and
in general? (Feel free to try other schemes as well, e.g., upwind versions of Schemes A and B
as identified in problem 1c.)

4. (Fourier approximation)
a. Prove that if u ∈ Hs

p for some integer s ≥ 0, then

∥u− PNu∥L2 ≤ N−s∥u∥Hs
p
,

where the space Hs
p is defined on slide D13-S10 and PN is defined in slide D13-S07.

b. Confirm this behavior by numerically computing ∥uj − PNuj∥L2 as a function of N for
each j = 0, 1, 2, 3. The functions uj , j ≥ 0, are defined as,

u0(x) :=

{
1, |x− π| < π

2
−1, else

uj(x) := cj +

∫ x

0
uj−1(y) dy (j ≥ 1),

where cj is chosen so that uj is a mean-0 function. Based on your numerical results what
type of regularity (s) does uj seem to have?

5. (Fourier interpolation)
a. For any N ≥ 1, k ∈ Z, prove that INϕk = ϕℓ, where ℓ satisfying |ℓ| ≤ N is the modular

restriction of k to [−N,N ]:

ℓ = ℓ(k) := k − (2N + 1)j ∈ [−N,N ], j ∈ Z.

An equivalent definition: ℓ(k) = −N + [(k +N) (mod 2N + 1)]. The operator IN is
defined on D14-S10 as the M = (2N +1)-point Fourier interpolation operator, and ϕk is
defined on slide D13-S03(b).

b. If u ∈ Hs
p , prove that,

∥u− INu∥L2 ≲ N−s∥u∥Hs
p
,

where a ≲ b means that a ≤ Cb for some constant C independent of N and u.
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