DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Analysis of Numerical Methods, II MATH 6620 – Section 001 – Spring 2024 Homework 4 Finite difference methods for time-dependent problems

Due Friday, March 22, 2024

Submit your solutions online through Gradescope.

1. (Stability)

a. Compute the region of the stability for the leapfrog method:

$$D^0 u^n = f^n,$$

for the ODE u' = f(t, u), with $u^n \approx u(t^n)$ and $f^n \approx f(t^n, u(t^n))$.

b. Investigate and discuss the consistency, stability, and practicality of the scheme,

$$D^0 u_j^n = D_+ D_- u_j^n$$

for the PDE $u_t = u_{xx}$.

c. Use von Neumann analysis to determine stability requirements for the Lax-Friedrichs and Lax-Wendroff schemes for $u_t + au_x = 0$, which are, respectively,

$$D^{+}u_{j}^{n} = -aD_{0}u_{j}^{n} + \frac{h^{2}}{2k}D_{+}D_{-}u_{j}^{n}$$
$$D^{+}u_{j}^{n} = -aD_{0}u_{j}^{n} + \frac{a^{2}k}{2}D_{+}D_{-}u_{j}^{n}$$

2. (Semi-Lagrangian methods) Consider the PDE,

$$u_t + au_x = 0,$$
 $u(x, 0) = u_0(x),$ $a > 0,$

with periodic boundary conditions for $x \in [0, 2\pi)$. Use our standard notation, $u_j^n \approx u(x_j, t^n)$ with $x_j = jh$ and $t^n = nk$ with $h = 2\pi/M$ and k > 0. In this problem, we will investgiate particular *semi-Lagrangian* schemes. Of particular use will be characteristic curves. Let $X(t; x_j, t^n)$ denote the characteristic curve passing through at $x = x_j$ at time $t = t^n$.

a. Consider the following scheme: Let the values of u_j^n for all j be given. We compute u_j^{n+1} as,

$$u_j^{n+1} = p_j(y), \qquad \qquad y \coloneqq X(t^n; x_j, t^{n+1})$$

where p_j is the linear interpolant formed by the data (x_{j-1}, u_{j-1}^n) and (x_j, u_j^n) . Show that this scheme is equivalent to the upwind scheme, and give conditions on a, k, h that ensure that $p_j(y)$ is an interpolatory evaluation instead of an extrapolatory evaluation. **b.** Consider the scheme,

 $u_i^{n+1} = q_i(y), \qquad \qquad y \coloneqq X(t^n; x_i, t^{n+1}),$

where q is the quadratic interpolant formed from (x_{j-1}, u_{j-1}^n) , (x_j, u_j^n) , and (x_{j+1}, u_{j+1}^n) . Explicitly write the scheme as a function of $\{u_j^n\}_j$ for this method, and compare against other schemes for this PDE that we've discussed in class.

3. (Orders of convergence)

This problem provides exercises to numerically confirm expected orders of convergence.

 ${\bf a.}\,$ For the PDE,

 $u_t = u_{xx},$ $u(x,0) = \exp(\sin x),$ $(x,t) \in [0,2\pi) \times (0,T],$

with periodic boundary conditions in x, numerically confirm that the scheme,

$$D^{+}u_{j}^{n} = \frac{1}{2}D_{+}D_{-}u_{j}^{n} + \frac{1}{2}D_{+}D_{-}u_{j}^{n+1},$$

is second-order in space and time, say for T = 1. b. For the PDE,

$$u_t = -u_x,$$
 $u(x,0) = \exp(\sin x),$ $(x,t) \in [0,2\pi) \times (0,T],$

with periodic boundary conditions in x, numerically confirm that the scheme,

$$D^0 u_j^n = -D_0 u_n^j,$$

is second-order in space and time, say for T = 1.