Department of Mathematics, University of Utah
 Analysis of Numerical Methods, II
 MATH 6620 - Section 001 - Spring 2024
 Homework 3
 Time-stepping methods, II

Due Wednesday, February 28, 2024

Submit your solutions online through Gradescope.

1. (Runga-Kutta Methods)
a. Recall Ralston's method from the previous assignment:

$$
\boldsymbol{u}_{n+1}=\boldsymbol{u}_{n}+\frac{k}{4} \boldsymbol{f}\left(t_{n}, \boldsymbol{u}_{n}\right)+\frac{3 k}{4} \boldsymbol{f}\left(t_{n}+\frac{2}{3} k, \boldsymbol{u}_{n}+\frac{2}{3} k \boldsymbol{f}\left(t_{n}, \boldsymbol{u}_{n}\right)\right),
$$

Identify the Butcher tableau for this method.
b. Show that Ralston's method is consistent to second order.
2. (Multi-step methods)
a. Compute coefficients for the following implicit multi-step scheme that achieves the optimal order of accuracy,

$$
\boldsymbol{u}_{n+1}+\alpha_{1} \boldsymbol{u}_{n}+\alpha_{2} \boldsymbol{u}_{n-1}=k \beta_{0} \boldsymbol{f}_{n+1}+k \beta_{1} \boldsymbol{f}_{n}+k \beta_{2} \boldsymbol{f}_{n-1},
$$

where $\boldsymbol{f}_{j}:=\boldsymbol{f}\left(t_{j}, \boldsymbol{u}_{j}\right)$.
b. Identify the order of consistency of the scheme, and determine whether this method is 0 -stable and/or A-stable.
3. (SSP Methods)

In this problem, consider an autonomous ODE, $\boldsymbol{u}^{\prime}=\boldsymbol{f}(\boldsymbol{u})$.
a. Consider an s-stage explicit Runge-Kutta method. For each $m=2, \ldots, s+1$, let constants $\left\{\alpha_{m, j}\right\}_{j=1}^{m-1}$ be given such that $\alpha_{m, j} \geq 0$ and $\sum_{j=1}^{m-1} \alpha_{m, j}=1$. Show that such an s-stage explicit method can be written as,

$$
\begin{aligned}
\boldsymbol{U}_{1} & :=\boldsymbol{u}_{n} \\
\boldsymbol{U}_{m} & :=\sum_{j=1}^{m-1}\left(\alpha_{m, j} \boldsymbol{U}_{j}+\beta_{m, j} \boldsymbol{f}\left(\boldsymbol{U}_{j}\right)\right) \quad 2 \leq m \leq s+1 \\
\boldsymbol{u}_{n+1} & =\boldsymbol{U}_{s+1}
\end{aligned}
$$

b. Let $|\cdot|$ be any seminorm on vectors \boldsymbol{u}, and suppose that there exists a $k_{*}>0$ such that for all \boldsymbol{u} and $k \in\left(0, k_{*}\right]$, then $|\boldsymbol{u}+k \boldsymbol{f}(\boldsymbol{u})| \leq|\boldsymbol{u}|$. Assume that the $\alpha_{m, j}$ coefficients above can be chosen so that $\beta_{m, j} \geq 0$ for all j, m. Show that there is a $c>0$ such that

$$
k \in\left(0, c k_{*}\right] \Longrightarrow\left|\boldsymbol{u}_{n+1}\right| \leq\left|\boldsymbol{u}_{n}\right|
$$

and explicitly identify a formula for c in terms of the $\alpha_{m, j}$ and $\beta_{m, j}$. Schemes that satisfy this are called (Runge-Kutta) Strong Stability Preserving (SSP) schemes. The constant c is called the SSP coefficient. (The point here is that it's somewhat easy to establish boundedness of the seminorm $|\cdot|$ for a simple Forward Euler scheme; SSP methods allow one to directly port this boundedness to higher order methods.)
c. Verify that the following is an SSP scheme:

0	0	0	0
1	1	0	0
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	0
	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$

d. Is the Ralston method from problem 1 an SSP scheme? If so, compute its SSP coefficient.
4. (Exponential Integrators)

For this problem, consider the ODE,

$$
\boldsymbol{u}^{\prime}(t)=\boldsymbol{A} \boldsymbol{u}+\boldsymbol{N}(t, \boldsymbol{u})
$$

where \boldsymbol{A} is a fixed matrix and \boldsymbol{N} is an arbitrary, e.g., nonlinear, function.
a. With initial data $\boldsymbol{u}(0)=\boldsymbol{u}_{0}$, show that the solution to this IVP at time $t>0$ is given by,

$$
\begin{equation*}
\boldsymbol{u}(t)=e^{t \boldsymbol{A}} \boldsymbol{u}_{0}+\int_{0}^{t} e^{(t-s) \boldsymbol{A}} \boldsymbol{N}(s, \boldsymbol{u}(s)) \mathrm{d} s \tag{1}
\end{equation*}
$$

where $e^{t \boldsymbol{A}}$ is the matrix exponential of $t \boldsymbol{A}$.
b. Exponential Integrators form a scheme by setting $(0, t) \leftarrow\left(t_{n}, t_{n+1}\right)$, replacing $e^{t \boldsymbol{A}}$ with $e^{\left(t_{n+1}-t_{n}\right) \boldsymbol{A}}$, and discretizing the integral above by approximating $\boldsymbol{N}(\boldsymbol{u}(s))$ with a quadrature rule/polynomial approximation. The matrix exponential term is treated (integrated) exactly. For example, Forward Euler makes the approximation $\boldsymbol{N}(\boldsymbol{u}(s)) \approx \boldsymbol{N}\left(\boldsymbol{u}_{n}\right)$. In terms of matrix operations (possibly including the matrix exponential) write out the Forward Euler and explicit midpoint (RK2) exponential integrator schemes. The explicit midpoint ("modified Euler") scheme has the tableau,

0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0
	0	1

c. Use both exponential integrator schemes to numerically solve,

$$
u_{t}=u_{x x}+100 u^{6}\left(1-u^{6}\right), \quad u(x, 0)=\sin \pi x+\frac{1}{4} \sin 2 \pi x
$$

with a finite-difference scheme in space for $x \in[0,1]$ with boundary conditions $u(0)=$ $u(1)=1$ up to terminal time $T=1$. Numerically investigate the k-order of convergence of these schemes.
5. (Well-posed linear PDEs)

Consider the IVP,

$$
\begin{equation*}
u_{t}=3 u_{x}-u_{x x}-u_{x x x x}, \quad u(x, 0)=u_{0}(x) \tag{2}
\end{equation*}
$$

with periodic boundary conditions on $x \in[0,2 \pi)$.
a. Determine if the PDE is well-posed in the sense of the definition on slide D10-S05.
b. Compute the exact solution to this PDE.

