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Analysis of Numerical Methods, II

MATH 6620 – Section 001 – Spring 2024
Homework 3 Solutions

Time-stepping methods, II

Due Friday, February 23, 2024

Submit your solutions online through Gradescope.

1. (Runga-Kutta Methods)
a. Recall Ralston’s method from the previous assignment:

un+1 = un +
k

4
f(tn,un) +

3k

4
f

(
tn +

2

3
k,un +

2

3
kf(tn,un)

)
,

Identify the Butcher tableau for this method.
b. Show that Ralston’s method is consistent to second order.

Solution:
a. We rewrite Ralston’s method as the following two-stage approach:

U1 = un + 0

U2 = un + k
2

3
f(tn,U1)

un+1 = un +
k

4
f(tn + 0k,U1) +

3k

4
f(tn + 2k/3,U2).

From this form, we can immediately read off the Butcher tableau coefficients:

0 0 0
2
3

2
3 0
1
4

3
4

b. We proceed to compute the LTE for this scheme, which we write as,

LTE =
u(tn+1)− u(tn)

k
− 1

4
f(tn,u(tn))−

3

4
f(tn + 2k/3,U2)

=
u(tn+1)− u(tn)

k
− 1

4
u′(tn)−

3

4
f(tn + 2k/3,U2) (1)

Armed with the two Taylor expansions around t = tn and (t,u) = (tn,u(tn)), respec-
tively, we have,

u(tn+1)− u(tn)

k
= u′(tn) +

k

2
u′′(tn) + O(k2)

f(tn + 2k/3,U2) = f(tn,un) + k
2

3

∂f

∂t
(tn,u(tn)) +

∂f

∂u
(tn,u(tn))(U2 − u1) + O(k2)

= u′(tn) + k
2

3

∂f

∂t
(tn,u(tn)) +

∂f

∂u
(tn,u(tn))(U2 − u1) + O(k2)
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where we have slightly abused notation, defining U2 := u(tn)+ 2k/3f(tn,u(tn)), and we
have used O(∥U2 − u(tn)∥2) = O(k2). Using these Taylor expansions in (1), we have,

LTE = u′(tn) +
k

2
u′′(tn)−

1

4
u′(tn)−

3

4
u′(tn)−

3

4
k
2

3

∂f

∂t
(tn,u(tn))

− 3

4

2k

3

∂f

∂u
(tn,u(tn))f(tn,u(tn)) + O(k2)

=
k

2
u′′(tn)−

k

2

(
∂f

∂t
(tn,u(tn)) +

∂f

∂u
(tn,u(tn))u

′(tn)

)
+ O(k2)

(∗)
=

k

2
u′′(tn)−

k

2
u′′(tn) + O(k2) = O(k2).

where (∗) uses the chain rule, d
dtu

′(tn) =
d
dtf(tn,u(tn)) =

∂f
∂t (tn,u(tn))+

∂f
∂u(tn,u(tn))u

′(t).

2. (Multi-step methods)
a. Compute coefficients for the following implicit multi-step scheme that achieves the opti-

mal order of accuracy,

un+1 + α1un + α2un−1 = kβ0fn+1 + kβ1fn + kβ2fn−1,

where fj := f(tj ,uj).
b. Identify the order of consistency of the scheme, and determine whether this method is

0-stable and/or A-stable.

Solution:
a. The LTE for this scheme reads,

LTE =
1

k
u(tn+1) +

α1

k
u(tn) +

α2

k
u(tn−1)− β0f(tn+1,u(tn+1))− β1f(tn,u(tn))− β2f(tn−1,u(tn−1))

=
1

k
u(tn+1) +

α1

k
u(tn) +

α2

k
u(tn−1)− β0u

′(tn+1)− β1u
′(tn)− β2u

′(tn−1)

With the abbreviations u = u(tn−1), u
′ = u′(tn−1), etc., we employ the following Taylor

series expansions:

u(tn+1) = u+ 2ku′ + 2k2u′′ +
4k3

3
u′′′ +

2k4

3
u′′′′ + . . .

u(tn) = u+ ku′ +
k2

2
u′′ +

k3

6
u′′′ +

k4

24
u′′′′ + . . .

u′(tn+1) = u′ + 2ku′′ + 2k2u′′′ +
4k3

6
u′′′′ + . . .

u′(tn) = u′ + ku′′ +
k2

2
u′′′ +

k3

6
u′′′′ + . . .

Using these in the LTE expression and collecting terms with the same order in k, we
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obtain the following system of linear equations:

O(1/k) : 1 + α1 + α2 = 0

O(1) : 2 + α1 − β0 − β1 − β2 = 0

O(k) : 2 +
α1

2
− 2β0 − β1 = 0

O(k2) :
4

3
+

α1

6
− 2β0 −

β1
2

= 0

O(k3) :
2

3
+

α1

24
− 4β0

3
β0 −

β1
6

= 0,

i.e., 
1 1 0 0 0
1 0 −1 −1 −1
1
2 0 −2 −1 0
1
6 0 −2 −1

2 0
1
24 0 −4

3 −1
6 0




α1

α2

β0
β1
β2

 =


−1
−2
−2
−4

3
−2

3

 ,

whose solution is,

(α1, α2, β0, β1, β2) =

(
0,−1, 1

3
,
4

3
,
1

3

)
.

Thus, the scheme is,

un+1 − un−1 =
k

3
fn+1 +

4k

3
fn +

k

3
fn−1.

b. From the previous part, all terms up to order O(k4) were eliminated. Hence, this scheme
is accurate to fourth order. To investigate stability, we identify the characteristic poly-
nomials from the coefficients determined in the previous part:

ρ(w) := w2 + α1w + α2 = w2 − 1

σ(w) := β0w
2 + β1w + β2 =

w2

3
+

4w

3
+

1

3
.

The roots of ρ(w) are w = ±1, which are simple roots on the unit circle. Hence, ρ satisfies
the root condition, and so the scheme is 0-stable. To determine A-stability, it is enough
to quote the second Dahlquist barrier: no A-stable multistep method of order greater
than 2 exists. Since our scheme is 4th order, it cannot possibly be A stable. However,
here is a more formal way to conclude this: To investigate A-stability, we would need the
w-polynomial

ρ(w)− zσ(w)

to satisfy the root condition for every z ∈ C in the left half-plane. To see if this is
plausible, consider a real-valued z < 0. Then,

ρ(w)− zσ(w) = w2(1− z/3) + w(−4z/3) + (z/3− 1)
η:=z/3
= w2(1− η)− 4ηw + (η − 1).
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The roots of this polynomial are the same as the roots of,

w2 − 4η

1− η
w − 1,

which are,

w =
2η

1− η
±

√
1 +

(
2η

1− η

)2

.

However, since η is negative, then the “−” root choice above puts this root outside the
unit circle for any η < 0. Hence, this scheme is not A-stable.

3. (SSP Methods)
In this problem, consider an autonomous ODE, u′ = f(u).

a. Consider an s-stage explicit Runge-Kutta method. For eachm = 2, . . . , s+1, let constants
{αm,j}m−1

j=1 be given such that αm,j ≥ 0 and
∑m−1

j=1 αm,j = 1. Show that such an s-stage
explicit method can be written as,

U1 := un,

Um :=

m−1∑
j=1

(αm,jUj + βm,jf(Uj)) 2 ≤ m ≤ s+ 1

un+1 = Us+1

b. Let | · | be any seminorm on vectors u, and suppose that there exists a k∗ > 0 such that
for all u and k ∈ (0, k∗], then |u+ kf(u)| ≤ |u|. Assume that the αm,j coefficients above
can be chosen so that βm,j ≥ 0 for all j, m. Show that there is a c > 0 such that

k ∈ (0, ck∗] =⇒ |un+1| ≤ |un| ,

and explicitly identify a formula for c in terms of the αm,j and βm,j . Schemes that satisfy
this are called (Runge-Kutta) Strong Stability Preserving (SSP) schemes. The constant
c is called the SSP coefficient. (The point here is that it’s somewhat easy to establish
boundedness of the seminorm | · | for a simple Forward Euler scheme; SSP methods allow
one to directly port this boundedness to higher order methods.)

c. Verify that the following is an SSP scheme:

0 0 0 0

1 1 0 0
1
2

1
4

1
4 0

1
6

1
6

2
3

d. Is the Ralston method from problem 1 an SSP scheme? If so, compute its SSP coefficient.

Solution:
a. An s-stage explicit Runge-Kutta method for an autonomous ODE evolving from time

t = tn with stepsize k ≥ 0 can be written as,

Um = un + k

m−1∑
j=1

am,jf(Uj), m ∈ [s]

un+1 = un + k
s∑

j=1

bjf(Uj),
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where {am,j , bj} are the Butcher tableau coefficients of the method. To understand the
basic idea of the desired transformation, consider m = 1, 2:

U1 = un,

U2 = un + ka2,1f(U1) = α2,1U1 + β2,1f(U1),

where on the second line we have used U1 = un and made the assignment:

α2,1 = 1, β2,1 = ka2,1.

In particular, the first equality defining Uj for j = 1, 2 above implies,

un = U1

un = U2 − ka2,1f(U1).

Then for m = 3, we have:

U3 = un + ka3,1f(U1) + ka3,2f(U2)

= α3,1un + α3,2un + ka3,1f(U1) + ka3,2f(U2)

= α3,1U1 + α3,2 (U2 − ka2,1f(U1)) + ka3,1f(U1) + ka3,2f(U2)

= (α3,1U1 + α3,2U2) + (β3,1f(U1) + β3,2f(U2)) ,

where

β3,1 = k(a3,1 − α3,2a2,1), β3,2 = ka3,2.

Thus, to show that we can do this for arbitrarily large s, we know from the fact that
these are explicit Runge-Kutta methods:

un = Um − k
m−1∑
j=1

am,jf(Uj), m ∈ [s],

and therefore for any m ∈ [s]:

Um = un + k
m−1∑
j=1

am,jf(Uj)

=

m−1∑
j=1

(αm,jun + kam,jf(Uj))

=
m−1∑
j=1

(
αm,j

(
Uj − k

j−1∑
ℓ=1

aj,ℓf(Uℓ)

)
+ kam,jf(Uj)

)
,

=

m−1∑
j=1

αm,jUj + βm,jf(Uj),

where

βm,j = k

am,j −
m−1∑
q=j+1

αm,qaq,j

 , m ∈ [s]
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This shows the result as desired for m ≤ s. To show the result for m = s+1 is a similar
computation:

Us+1 = un + k
s∑

j=1

bjf(Uj)

=
s∑

j=1

(αs+1,jun + kbjf(Uj))

= · · ·

=
s∑

j=1

αs+1,jUj + βs+1,jf(Uj),

with,

βs+1,j = k

bj −
s∑

q=j+1

αm,qaq,j

 ,

b. Semi-norms satisfy the triangle inequality:

|u+ v| ≤ |u|+ |v|.

Using what we have learned from the previous part, then for any m ∈ [s+ 1]:

Um =
m−1∑
j=1

(αm,jUj + βm,jf(Uj))

=

m−1∑
j=1

αm,j

[
Uj +

βm,j

αm,j
f(Uj)

]
(2)

To make the strategy moving forward very explicit, consider the following “Forward
Euler” operator:

FE(u, k) := u+ kf(u).

Applying the FE notation to (2), we have,

Um =
m−1∑
j=1

αm,jFE (Uj , km,j) km,j =
βm,j

αm,j
≥ 0,

where the inequality on km,j uses the assumption that βm,j ≥ 0. Pairing this property
with the fact that αm,j ≥ 0 and

∑m−1
j=1 αm,j = 1 shows that, for SSP methods, interme-

diate RK stages are convex combinations of forward Euler steps. Now suppose we choose
k such that,

k ≤ ck∗, c = min
1≤j<m≤s+1

αm,j

βm,j/k
=⇒ km,j ≤ k∗.
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(Note that βm,j/k is independent of k.) Under this choice of k, then FE(u, k) ≤ |u| by
assumption. Then by the triangle inequality and the convex weight property of {αm,j}j ,
we have,

|Um| ≤
m−1∑
j=1

αm,j |FE(Uj , km,j)|
km,j≤k∗
≤

∑
j∈[m−1]

αm,j |Uj | ≤ max
j∈[m−1]

|Uj |.

By induction over m, we conclude that |Um| ≤ |U1|, i.e. Us+1 = un+1 satisfies |un+1| ≤
|un|.

c. For the scheme in question, we have,

U1 = un

U2 = un + kf(U1)

= U1 + kf(U1)

U3 = un +
k

4
f(U1) +

k

4
f(U2)

= α3,1U1 + (1− α3,1) (U2 − kf(U1)) +
k

4
f(U1) +

k

4
f(U2)

= α3,1U1 + k

(
−3

4
+ α3,1

)
f(U1) + (1− α3,1)U2 +

k

4
f(U2).

where we have introduced a general 0 ≤ α3,1 ≤ 1 and used α3,2 = 1− α3,1. In order for
this to satisfy β3,1 ≥ 0, then we require,

α3,1 ≥
3

4
.

The final stage has the form,

un+1 = un +
k

6
f(U1) +

k

6
f(U2) +

2k

3
f(U3)

= α4,1U1 + α4,2(U2 − kf(U1)) + (1− α4,1 − α4,2)

(
U3 −

k

4
f(U1)−

k

4
f(U2)

)
+

k

6
f(U1) +

k

6
f(U2) +

2k

3
f(U3)

= α4,1U1 + β4,1f(U1) + α4,2U2 + β4,2f(U2) + (1− α4,1 − α4,2)U3 + β4,3f(U3),

where

β4,1/k = −α4,2 +
α4,1 + α4,2 − 1

4
+

1

6
= − 1

12
+

1

4
α4,1 −

3

4
α4,2

β4,2/k =
α4,1 + α4,2 − 1

4
+

1

6
= − 1

12
+

1

4
α4,1 +

1

4
α4,2

β4,3/k =
2

3
.

In order for these β coefficients to be non-negative, we require that the α coefficients
satisfy,

α4,1 − 3α4,2 ≥
1

3

α4,1 + α4,2 ≥
1

3
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This pair of inequalities is satisfied if,

α4,1 ≥
1

3
,

α4,2 ≤
α4,1

3
− 1

9
.

Hence, choosing any α3,1 ≥ 3
4 , α4,1 ≥ 1

3 , and α4,2 ≤ α4,1

3 −
1
9 shows that this an SSP

scheme (with nonzero c if α4,2 > 0).
d. In order for the Ralston scheme to be SSP, we see if it can be rewritten as a convex

combination of Forward Euler steps:

U1 = un

U2 = un +
2k

3
f(U1) = U1 +

2k

3
f(U1)

un+1 = un +
k

4
f(U1) +

3k

4
f(U2)

= α3,1U1 + (1− α3,1)

(
U2 −

2k

3
f(U1)

)
+

k

4
f(U1) +

3k

4
f(U2)

= α3,1U1 + k

[
1

4
− 2

3
(1− α3,1)

]
f(U1) + (1− α3,1)U2 + k

3

4
f(U2)

To make this SSP, we require,

1

4
− 2

3
(1− α3,1) ≥ 0,

i.e., α3,1 ≥ 5/8. Hence, this is an SSP scheme. The SSP coefficient is the minimum over
all the expressions,

g1(α3,1) =
α2,1

β2,1/k
=

1

2/3
=

3

2

g2(α3,1) =
α3,1

β3,1/k
=

α3,1
1
4 −

2
3(1− α3,1)

=
12

8− 5
α3,1

g3(α3,1) =
α3,2

β3,2/k
=

1− α3,1

3/4
=

4

3
(1− α3,1)

We seek maxα3,1 minj∈[3] gj(α3,1) as the best (largest) SSP coefficient. First we note that

g2(α3,1) ≥ 4 ≥ 3

2
= g1(α3,1), α3,1 ∈ [5/8, 1],

and hence we may ignore g2. We also note that,

g1(α3,1) =
3

2
>

4

3
≥ 4

3
(1− α3,1) = g3(α3,1), α3,1 ∈ [5/8, 1],

and hence we may also ignore g1. Therefore, we need only maximize the minimum of g3,
which is achieved by:

max
α3,1∈[5/8,1]

g2(α3,1) =
1

2
,

so the SSP coefficient for this method is c = 1/2, which can be realized by taking α3,1 =
5
8 .
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4. (Exponential Integrators)
For this problem, consider the ODE,

u′(t) = Au+N(t,u),

where A is a fixed matrix and N is an arbitrary, e.g., nonlinear, function.
a. With initial data u(0) = u0, show that the solution to this IVP at time t > 0 is given

by,

u(t) = etAu0 +

∫ t

0
e(t−s)AN(s,u(s)) ds, (3)

where etA is the matrix exponential of tA.
b. Exponential Integrators form a scheme by setting (0, t) ← (tn, tn+1), replacing etA with

e(tn+1−tn)A, and discretizing the integral above by approximatingN(u(s)) with a quadra-
ture rule/polynomial approximation. The matrix exponential term is treated (integrated)
exactly. For example, Forward Euler makes the approximation N(u(s)) ≈ N(un). In
terms of matrix operations (possibly including the matrix exponential) write out the For-
ward Euler and explicit midpoint (RK2) exponential integrator schemes. The explicit
midpoint (“modified Euler”) scheme has the tableau,

0 0 0
1
2

1
2 0

0 1

c. Use both exponential integrator schemes to numerically solve,

ut = uxx + 100u6(1− u6), u(x, 0) = sinπx+
1

4
sin 2πx, (4)

with a finite-difference scheme in space for x ∈ [0, 1] with boundary conditions u(0) =
u(1) = 0 up to terminal time T = 1. Numerically investigate the k-order of convergence
of these schemes.

Solution:
a. Using that e0 = I, then the prescribed solution clearly satisfies the initial conditions.

To show that it satisfies the ODE, we will recall two facts. The first is the (generalized)
Fundamental Theorem of Calculus:

d

dt

∫ b(t)

a(t)
g(t, s) ds = g(t, b(t))− g(t, a(t)) +

∫ b(t)

a(t)

∂g

∂t
(t, s) ds

The second is the defining property of the matrix exponential:

y(t) = etAy0 =⇒ y′ = Ay =⇒ d

dt
etAy0 = AetAy0.

Therefore,

d

dt
u(t) = AetAu0 +

∫ t

0
Ae(t−s)AN(s,u(s)) ds+N(t,u(t))

= A

(
etAu0 +

∫ t

0
e(t−s)AN(s,u(s)) ds

)
u0 +N(t,u(t))

= Au+N(t,u(t)),

verifying that u satisfies the ODE.
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b. Before tackling this problem, we make another slight digression to establish a useful fact:
if, as before y′ = etAy0, then

d

dt
etAy0 = AetAy0 =⇒ d

dt

(
A−1etAy0

)
= etAy0,

establishing that A−1etA is an antiderivative of etA. Armed with this, the forward Euler
discretization of (3) is,

un+1 = ekAun +

∫ tn+1

tn

e(tn+1−s)AN(tn,un) ds

= ekAun −A−1e(tn+1−s)AN(tn,un)
∣∣tn+k

s=tn

= ekAun −A−1N(tn,un)−A−1ekAN(tn,un)

= ekAun −A−1
(
I − ekA

)
N(tn,un).

where we have used the standard notation tn = nk. The modified Euler (RK2) scheme is
given by a Forward Euler intermediate step of size k/2, followed by a full Forward Euler
step using the intermediate stage as the approximation to u:

U1 = e0Aun +

∫ tn

tn

e(t−s)AN(s,u(s)) ds = un

U2 = e
k
2
Aun +

∫ tn+
k
2

tn

e(t−s)AN(tn,U1) ds = e
k
2
Aun −A−1

(
I − e

k
2
A
)
N(tn,un)

un+1 = ekAun +

∫ tn+k

tn

e(t−s)AN(tn+1/2,U2) ds = ekAun −A−1
(
I − ekA

)
N(tn + k/2,U2)

c. We implement both of these schemes using the spatial discretization,

d

dt
uj(t) = D+D−uj(t) + 100uj(t)

6(1− uj(t)
6), j ∈ [M ],

on an equispaced grid of M = 100 interior points over [0, 1]. We report errors using both
exponential integrator schemes using k = T/N for increasing choices of N . We show
results in table 1, where orders/rates of convergence between simulations with k = k1
and k = k2 are computed as,

rate =
log
(
err(k1)
err(k2)

)
log
(
k1
k2

) .

Errors are computed as
√
h-scaled vector ℓ2 errors at the terminal time:

error =
√
h

√√√√ M∑
j=1

(
uNj − Uj(T )

)2
,

where Uj(T ) is the solution computed using an explicit fourth-order Runge-Kutta method
with step size k = 2 × 10−5 = 1

50000 . We see from table 1 that the exponential Euler
method outperforms its RK2 variant for relatively small values of k, but they both reach

Akil Narayan: akil (at) sci.utah.edu 10



Homework 3 Solutions
6620 Analysis of Numerical Methods, II University of Utah

k = 1
N Exp Euler error Exp Euler rate Exp RK2 error Exp RK2 rate

1
200 4.46× 10−2 — 1.19× 10−1 —
1

250 1.28× 10−2 5.58 1.35× 10−1 -0.58
1

300 1.66× 10−13 137.50 1.48× 10−1 -0.50
1

350 1.67× 10−13 -0.06 1.59× 10−1 -0.43
1

400 1.69× 10−13 -0.03 1.67× 10−1 -0.37
1

450 1.70× 10−13 -0.05 1.73× 10−1 -0.31
1

500 1.71× 10−13 -0.09 1.71× 10−13 262.34

Table 1: Errors and orders of convergence for Exponential Euler and Exponential RK2 methods
for problem (4).

machine precision error for sufficiently large k. Note that this type of behavior is not
surprising since this is a (very) nonlinear problem; the expected orders of convergence
for both of these methods is in the k-asymptotic regime only, but anything can happen
in the pre-asymptotic regime. The main advantage of using the exponential integrators
is that they handle the stiff term uxx very well. Using the standard explicit Runge-Kutta
4 requires N ≳ 14500 before the numerical solution is even stable. Hence, exponen-
tial integrators can reduce the timestep restriction in this case by almost an order of
magnitude.

5. (Well-posed linear PDEs)
Consider the IVP,

ut = 3ux − uxx − uxxxx, u(x, 0) = u0(x), (5)

with periodic boundary conditions on x ∈ [0, 2π).
a. Determine if the PDE is well-posed in the sense of the definition on slide D10-S05.
b. Compute the exact solution to this PDE.

Solution:
a. The symbol of this PDE is,

P(ω) = F

{
3
∂

∂x
− ∂2

∂x2
− ∂4

∂x4

}
= 3iω + ω2 − ω4.

To assess well-posedness, we evaluate,∣∣∣eP(ω)∣∣∣ = eω
2−ω4 ≤ 1,

for any ω ∈ Z. Hence, this PDE is well-posed.
b. Since the PDE is well-posed, we can compute the exact solution through a Fourier Series

approach. Taking the Fourier transform of the PDE yields:

d

dt
U(ω, t) = P(ω)U(ω, t), ω ∈ Z,
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with initial conditions U(ω, 0) defined by,

u0(x) =
∑
ω∈Z

U0(ω)e
iωx.

The solution to the ODE system is therefore,

U(ω, t) = eP (ω)tU0(ω) = e3iωt+(ω2−ω4)tU0(ω).

Hence, the full solution is,

u(x, t) =
∑
ω∈Z

U(ω, t)eiωx =
∑
ω∈Z

e3iωt+(ω2−ω4)teiωxU0(ω)
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