Department of Mathematics, University of Utah
 Analysis of Numerical Methods, II
 MATH 6620 - Section 001 - Spring 2024
 Homework 1
 Finite differences for 1D stationary problems

Due Friday, Jan 26, 2024

Submit your solutions online through Gradescope.

1. (Finite difference formulas)

In the following, fix $M \in \mathbb{N}$, define $h=1 /(M+1)$, and let $x_{j}=j h$ for $j=0, \ldots, M+1$ be an equidistant grid on $[0,1]$. Let $U_{j}:=u\left(x_{j}\right)$ denote the value of a function u at x_{j}.
a. Compute a three-point one-sided finite difference approximation to the second derivative of u at x_{0}, and identify the order of accuracy of this approximation. I.e., use U_{0}, U_{1}, U_{2} to compute an approximation to $\left.u^{\prime \prime}\right|_{x_{0}}$.
b. Use a centered five-point stencil of nearest neighbors to compute an approximation to $u^{\prime \prime}$ at x_{j} (for $2 \leq j \leq M-1$), accurate to as high an order of approximation as possible. What is the order of accuracy of this approximation?
c. Consider $D_{0} D_{0} U_{j}$. What quantity does this approximate, and to what order?
2. (Finite difference methods in 1D)

For the ODE,

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x), \quad x \in(0,1) \tag{1}
\end{equation*}
$$

with homogeneous boundary conditions $u(0)=u(1)=0$, empirically confirm that the numerical scheme

$$
-D_{+} D_{-} u_{j}=f_{j}, \quad j \in[M]
$$

is second-order convergent. Here, $f_{j}=f\left(x_{j}\right)$ and $u_{j} \approx u\left(x_{j}\right)$, with

$$
x_{j}=j h, \quad h=\frac{1}{M+1}
$$

for some $M \in \mathbb{N}$. For this example, use $f(x)=-2 \pi \cos \pi x+\pi^{2} x \sin \pi x$, for which the exact solution is $u(x)=x \sin \pi x$. To "confirm" the order of convergence, plot the scaled error,

$$
\|\boldsymbol{u}-\boldsymbol{U}\|_{2, h}:=\sqrt{h}\|\boldsymbol{u}-\boldsymbol{U}\|_{2}
$$

as a function of h on a log-log plot, and visually compare the data to a line of slope 2 . Above, $U_{j}=u\left(x_{j}\right)$. In your solution, explicitly write all these details, so that the solution is readable by a person who would not have read the problem statement.
3. (Finite difference methods in 1D)

Consider the ordinary differential equation:

$$
\begin{equation*}
-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\kappa(x) \frac{\mathrm{d}}{\mathrm{~d} x} u(x)\right)=f(x), \quad x \in(0,1) \tag{2}
\end{equation*}
$$

with homogeneous Dirichlet boundary conditions, $u(0)=u(1)=0$, and where the scalar diffusion coefficient κ is given by,

$$
\kappa(x)=2+\sum_{\ell=1}^{5} \frac{1}{\ell+1} \sin (\ell \pi x) .
$$

The goal of this exercise will be to numerically compute solutions to this problem.
a. Define the operator,

$$
\widetilde{D}_{0} u\left(x_{j}\right)=\frac{u\left(x_{j}+h / 2\right)-u\left(x_{j}-h / 2\right)}{h}, \quad h=1 /(M+1), \quad x_{j}:=j h,
$$

for a fixed number of points $M \in \mathbb{N}$. Then with u_{j} the numerical solution approximating $u\left(x_{j}\right)$, consider the scheme,

$$
\begin{equation*}
-\widetilde{D}_{0}\left(\kappa\left(x_{j}\right) \widetilde{D}_{0} u_{j}\right)=f\left(x_{j}\right), \quad j \in[M] \tag{3}
\end{equation*}
$$

Show that, for smooth u and κ, this scheme has second-order local truncation error.
b. Construct an exact solution via the method of manufactured solutions: posit an exact (smooth) nontrivial solution $u(x)$ (that satisfies the boundary conditions!) and compute f in (2) so that your posited solution satisfies (2).
c. Implement the scheme above for solving (2), setting f to be the function identified in part (b), so that you know the exact solution. Show that indeed you achieve second-order convergence in h (in the $h^{1 / 2}$-scaled vector ℓ^{2} norm as in the previous problem).

