# Department of Mathematics, University of Utah <br> Analysis of Numerical Methods, II MATH 6620 - Section 001 - Spring 2024 <br> Homework 1 Solutions <br> Finite differences for 1D stationary problems 

Due Friday, Jan 26, 2024

Submit your solutions online through Gradescope.

1. (Finite difference formulas)

In the following, fix $M \in \mathbb{N}$, define $h=1 /(M+1)$, and let $x_{j}=j h$ for $j=0, \ldots, M+1$ be an equidistant grid on $[0,1]$. Let $U_{j}:=u\left(x_{j}\right)$ denote the value of a function $u$ at $x_{j}$.
a. Compute a three-point one-sided finite difference approximation to the second derivative of $u$ at $x_{0}$, and identify the order of accuracy of this approximation. I.e., use $U_{0}, U_{1}, U_{2}$ to compute an approximation to $\left.u^{\prime \prime}\right|_{x_{0}}$.
b. Use a centered five-point stencil of nearest neighbors to compute an approximation to $u^{\prime \prime}$ at $x_{j}$ (for $2 \leq j \leq M-1$ ), accurate to as high an order of approximation as possible. What is the order of accuracy of this approximation?
c. Consider $D_{0} D_{0} U_{j}$. What quantity does this approximate, and to what order?

## Solution:

a. We seek constants $A, B, C$ such that,

$$
A U_{0}+B U_{1}+C U_{2} \approx u^{\prime \prime}\left(x_{0}\right)
$$

To accomplish this, we note that $x_{j}=x_{0}+j h$, and use the following Taylor Series approximations,

$$
\begin{aligned}
& U\left(x_{1}\right)=U\left(x_{0}+h\right)=U_{0}+h U_{0}^{\prime}+\frac{h^{2}}{2} U_{0}^{\prime \prime}+\frac{h^{3}}{6} U_{0}^{\prime \prime \prime}+\mathcal{O}\left(h^{4}\right) \\
& U\left(x_{2}\right)=U\left(x_{0}+2 h\right)=U_{0}+2 h U_{0}^{\prime}+2 h^{2} U_{0}^{\prime \prime}+\frac{4 h^{3}}{3} U_{0}^{\prime \prime \prime}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

where $U_{j}^{\prime}=u^{\prime}\left(x_{j}\right)$, and similarly for $U_{j}^{\prime \prime}, U_{j}^{\prime \prime \prime}$. Therefore, we have:

$$
\begin{aligned}
A U_{0}+B U_{1}+C U_{2} & =U_{0}[A+B+C]+ \\
& +U_{0}^{\prime}[B h+2 h C]+ \\
& +U_{0}^{\prime \prime}\left[B \frac{h^{2}}{2}+2 C h^{2}\right]+ \\
& +U_{0}^{\prime \prime \prime}\left[B \frac{h^{3}}{6}+\frac{4 h^{3}}{3} C\right]+\mathcal{O}\left(h^{4}\right) .
\end{aligned}
$$

In order for the right-hand side to approximate $U_{0}^{\prime \prime}$, we require the following conditions on the first three bracketed terms involving $A, B, C$ :

$$
\begin{aligned}
A+B+C & =0 \\
B+2 C & =0 \\
\frac{B}{2}+2 C & =\frac{1}{h^{2}} .
\end{aligned}
$$

The solution to this $3 \times 3$ linear system is,

$$
(A, B, C)=\frac{1}{h^{2}}(1,-2,1) .
$$

Therefore, the desired approximation is

$$
U_{0}^{\prime \prime} \approx \frac{1}{h^{2}} U_{0}-\frac{2}{h^{2}} U_{1}+\frac{1}{h^{2}} U_{2}
$$

This is a first-order accurate approximation since we have:

$$
\begin{aligned}
A U_{0}+B U_{1}+C U_{2} & =U_{0}^{\prime \prime}+U_{0}^{\prime \prime \prime}\left[B \frac{h^{3}}{6}+\frac{4 h^{3}}{3} C\right]+\mathcal{O}\left(h^{2}\right) \\
& =U_{0}^{\prime \prime}+U_{0}^{\prime \prime \prime}\left[-\frac{h}{3}+\frac{4 h}{3}\right]+\mathcal{O}\left(h^{2}\right) \\
& =U_{0}^{\prime \prime}+\mathcal{O}(h)
\end{aligned}
$$

b. To construct a five-point approximation to the second derivative at $x_{j}$, we again compile some Taylor Series:
$U\left(x_{j \pm 1}\right)=U\left(x_{j} \pm h\right)=U_{j} \pm h U_{j}^{\prime}+\frac{h^{2}}{2} U_{j}^{\prime \prime} \pm \frac{h^{3}}{6} U_{j}^{\prime \prime \prime}+\frac{h^{4}}{24} U_{j}^{\prime \prime \prime \prime} \pm \frac{h^{5}}{120} U_{j}^{(5)}+\frac{h^{6}}{720} U_{j}^{(6)}+\cdots$
$U\left(x_{j \pm 2}\right)=U\left(x_{j} \pm 2 h\right)=U_{0} \pm 2 h U_{j}^{\prime}+2 h^{2} U_{j}^{\prime \prime} \pm \frac{4 h^{3}}{3} U_{0}^{\prime \prime \prime}+\frac{2}{3} h^{4} U_{0}^{\prime \prime \prime \prime} \pm \frac{4}{15} 5^{5} U_{0}^{(5)}+\frac{4}{45} h^{6} U_{j}^{(6)}+\cdots$
Once again we attempt to find coefficients $(A, B, C, D, E)$ such that,

$$
A U_{j-2}+B U_{j-1}+C U_{j}+D U_{j+1}+E U_{j+2} \approx U_{0}^{\prime \prime}
$$

which when using our Taylor Series approximations leads to the constraints,

$$
\begin{aligned}
A+B+C+D+E & =0 \\
-2 A-B+D+2 E & =0 \\
2 A+\frac{B}{2}+\frac{D}{2}+2 E & =\frac{1}{h^{2}} \\
-\frac{4}{3} A-\frac{1}{6} B+\frac{1}{6} D+\frac{4}{3} E & =0 \\
\frac{2}{3} A+\frac{1}{24} B+\frac{1}{24} D+\frac{2}{3} E & =0
\end{aligned}
$$

The second and fourth equations imply $A=E$ and $B=D$, so the $5 \times 5$ system above reduces to the following $3 \times 3$ system for ( $A, B, C$ ):

$$
\begin{aligned}
2 A+2 B+C & =0 \\
4 A+B & =\frac{1}{h^{2}} \\
\frac{4}{3} A+\frac{1}{12} B & =0,
\end{aligned}
$$

from which we derive the solution:

$$
(A, B, C, D, E)=\frac{1}{h^{2}}\left(-\frac{1}{12}, \frac{16}{12},-\frac{30}{12}, \frac{16}{12},-\frac{1}{12}\right) .
$$

c. First we compute the stencil and coefficients for this approximation:

$$
\begin{aligned}
D_{0} D_{0} U_{j}=D_{0}\left(\frac{U_{j+1}-U_{j-1}}{2 h}\right) & =\frac{1}{2 h} D_{0} U_{j+1}-\frac{1}{2 h} D_{0} U_{j-1} \\
& =\frac{1}{2 h}\left(\frac{U_{j+2}-U_{j}}{2 h}\right)-\frac{1}{2 h}\left(\frac{U_{j}-U_{j-2}}{2 h}\right) \\
& =\frac{1}{(2 h)^{2}}\left(U_{j-2}-2 U_{j}+U_{j+2}\right) .
\end{aligned}
$$

The above is simply the standard 3-point centered approximation to the second derivative with a mesh spacing of $2 h$, which has order of accuracy $\mathcal{O}\left((2 h)^{2}\right)=\mathcal{O}\left(h^{2}\right)$. To confirm this, we have already seen that the Taylor approximation is,

$$
u(x \pm 2 h)=u(x) \pm 2 h u^{\prime}(x)+2 h^{2} u^{\prime \prime}(x) \pm \frac{4}{3} h^{3} u^{\prime \prime \prime}(x)+\frac{2}{3} h^{4} u^{(4)}(x)+\cdots
$$

And therefore,

$$
\frac{1}{(2 h)^{2}}\left(U_{j-2}-2 U_{j}+U_{j+2}\right)=u^{\prime \prime}(x)+\frac{1}{3} h^{2} u^{(4)}(x)+\cdots=u^{\prime \prime}(x)+\mathcal{O}\left(h^{2}\right) .
$$

2. (Finite difference methods in 1D)

For the ODE,

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x), \quad x \in(0,1) \tag{1}
\end{equation*}
$$

with homogeneous boundary conditions $u(0)=u(1)=0$, empirically confirm that the numerical scheme

$$
-D_{+} D_{-} u_{j}=f_{j}, \quad j \in[M]
$$

is second-order convergent. Here, $f_{j}=f\left(x_{j}\right)$ and $u_{j} \approx u\left(x_{j}\right)$, with

$$
x_{j}=j h, \quad h=\frac{1}{M+1},
$$

for some $M \in \mathbb{N}$. For this example, use $f(x)=-2 \pi \cos \pi x+\pi^{2} x \sin \pi x$, for which the exact solution is $u(x)=x \sin \pi x$. To "confirm" the order of convergence, plot the scaled error,

$$
\|\boldsymbol{u}-\boldsymbol{U}\|_{2, h}:=\sqrt{h}\|\boldsymbol{u}-\boldsymbol{U}\|_{2},
$$

as a function of $h$ on a log-log plot, and visually compare the data to a line of slope 2. Above, $U_{j}=u\left(x_{j}\right)$. In your solution, explicitly write all these details, so that the solution is readable by a person who would not have read the problem statement.

Solution: To approximate the solution $u$ to the ODE

$$
-u^{\prime \prime}(x)=f(x), \quad x \in(0,1),
$$

with homogeneous boundary conditions $u(0)=u(1)=0$, we implement the scheme

$$
-D_{+} D_{-} u_{j}=f_{j}, \quad j \in[M]
$$



Figure 1: Numerical results for problem 2: second-order convergence of a 3-point central finitedifference approximation in 1D.
where $f_{j}=f\left(x_{j}\right)$,

$$
x_{j}=j h, \quad h=\frac{1}{M+1},
$$

to compute $\boldsymbol{u}=\left(u_{1}, \ldots, u_{M}\right)^{T}$, where $u_{j} \approx u\left(x_{j}\right)$. Since the local truncation error for this scheme is $\mathcal{O}\left(h^{2}\right)$, we expect second-order convergence for the error, defined as,

$$
\|\boldsymbol{e}\|_{2, h}:=\sqrt{h} \sqrt{\sum_{j=1}^{M}\left(u_{j}-u\left(x_{j}\right)\right)^{2}} .
$$

To test this scheme, we use the following forcing function $f$ and its corresponding solution $u$ :

$$
f(x)=-2 \pi \cos \pi x+\pi^{2} x \sin \pi x, \quad u(x)=x \sin \pi x .
$$

The results for various choices of $h$ are shown in Figure 1, confirming with empirical results that the scheme exhibits second-order convergence.
3. (Finite difference methods in 1D)

Consider the ordinary differential equation:

$$
\begin{equation*}
-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\kappa(x) \frac{\mathrm{d}}{\mathrm{~d} x} u(x)\right)=f(x), \quad x \in(0,1) \tag{2}
\end{equation*}
$$

with homogeneous Dirichlet boundary conditions, $u(0)=u(1)=0$, and where the scalar diffusion coefficient $\kappa$ is given by,

$$
\kappa(x)=2+\sum_{\ell=1}^{5} \frac{1}{\ell+1} \sin (\ell \pi x)
$$

The goal of this exercise will be to numerically compute solutions to this problem.
a. Define the operator,

$$
\widetilde{D}_{0} u\left(x_{j}\right)=\frac{u\left(x_{j}+h / 2\right)-u\left(x_{j}-h / 2\right)}{h}, \quad h=1 /(M+1), \quad x_{j}:=j h
$$

for a fixed number of points $M \in \mathbb{N}$. Then with $u_{j}$ the numerical solution approximating $u\left(x_{j}\right)$, consider the scheme,

$$
\begin{equation*}
-\widetilde{D}_{0}\left(\kappa\left(x_{j}\right) \widetilde{D}_{0} u_{j}\right)=f\left(x_{j}\right), \quad j \in[M] \tag{3}
\end{equation*}
$$

Show that, for smooth $u$ and $\kappa$, this scheme has second-order local truncation error.
b. Construct an exact solution via the method of manufactured solutions: posit an exact (smooth) nontrivial solution $u(x)$ (that satisfies the boundary conditions!) and compute $f$ in (2) so that your posited solution satisfies (2).
c. Implement the scheme above for solving (2), setting $f$ to be the function identified in part (b), so that you know the exact solution. Show that indeed you achieve second-order convergence in $h$ (in the $h^{1 / 2}$-scaled vector $\ell^{2}$ norm as in the previous problem).

## Solution:

a. Let $\kappa_{j}=\kappa\left(x_{j}\right)$ and $U_{j}:=u\left(x_{j}\right)$. Then,

$$
\widetilde{D}_{0} U_{j}=U_{j}^{\prime}+\frac{h^{2}}{24} U_{j}^{\prime \prime \prime}+\mathcal{O}\left(h^{4}\right) .
$$

Then since $\kappa$ and $u$ are smooth:

$$
\begin{aligned}
-\widetilde{D}_{0}\left(\kappa_{j} \widetilde{D}_{0} U_{j}\right) & =-\widetilde{D}_{0}\left(\kappa_{j} U_{j}^{\prime}+\frac{h^{2}}{24} \kappa_{j} U_{j}^{\prime \prime \prime}+\mathcal{O}\left(h^{4}\right)\right) \\
& =-\left(\kappa_{j} U_{j}^{\prime}\right)^{\prime}+\frac{h^{2}}{24}\left(\kappa_{j} U_{j}^{\prime}\right)^{\prime \prime \prime}+\mathcal{O}\left(h^{4}\right)-\frac{h^{2}}{24}\left(\kappa_{j} U_{j}^{\prime \prime \prime}\right)^{\prime}+\mathcal{O}\left(h^{4}\right)+\mathcal{O}\left(h^{4}\right) \\
& =-\left(\kappa_{j} U_{j}^{\prime}\right)^{\prime}+\mathcal{O}\left(h^{2}\right) \\
& \stackrel{(2)}{=} f_{j}+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

Hence, the local truncation error, i.e., the residual of (3) with $u_{j} \leftarrow U_{j}$ is:

$$
L T E=-\widetilde{D}_{0}\left(\kappa_{j} \widetilde{D}_{0} U_{j}\right)-f\left(x_{j}\right)=\mathcal{O}\left(h^{2}\right) .
$$

b. There are many possible choices. We'll consider $u(x)=\sin \pi x$, for which we have,

$$
f(x)=-\left(\kappa(x) u^{\prime}\right)^{\prime}=-\pi(\kappa(x) \cos \pi x)^{\prime}=-\pi \kappa^{\prime}(x) \cos \pi x+\pi^{2} \kappa(x) \sin \pi x .
$$

c. We use a similar procedure as in problem 2 to compute the error. This results in the very visually similar results in Figure 2, again confirming second-order convergence for this finite difference scheme for non-constant diffusion coefficient.


Figure 2: Numerical results for problem 3: second-order convergence of a 3-point central finitedifference approximation in 1D with non-constant diffusion coefficient.

