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Brownian motion and stochastic integration D23-S02(a)

We have introduced the stochastic process Brownian motion, By = B(t).
Q
- P(B@ =0)=1
— B is continuous with probability 1

— The n sequential increments formed by any choice of n + 1 ordered time points t1,

.., tn+1 are mutually
independent

— For any 0 < s <t < o0, then B(t) — B(s) ~ N(0,t — s).
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Brownian motion and stochastic integration D23-S02(b)

We have introduced the stochastic process Brownian motion, By = B(t).
- P(B(t)=0)=1
— B is continuous with probability 1

— The n sequential increments formed by any choice of n + 1 ordered time points ¢1,...,t,4+1 are mutually
independent

— For any 0 < s <t < o0, then B(t) — B(s) ~ N(0,t — s).
Using this, we have defined the It6 integral:

T n
| s@as = tim 3 -0 - B, p AT
j=1

0
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Brownian motion and stochastic integration D23-S02(c)

We have introduced the stochastic process Brownian motion, By = B(t).
- P(ng =0)=1
— B is continuous with probability 1

— The n sequential increments formed by any choice of n + 1 ordered time points ¢1,...,t,4+1 are mutually
independent

— For any 0 < s <t < o0, then B(t) — B(s) ~ N(0,t — s).
Using this, we have defined the It6 integral:

T n
fO f(t)dB: = Z tj—1)(B(t;) — B(tj—1)), tj = —.
The 1t6 integral can be used to notationally define differentials and (stochastic) differential equations:

T
XT = JO f(t)dBt — dXt = f(t)dBt

It is this differential notation that we will mostly exercise moving forward.
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Some examples D23-S03(a)

Here are some examples of SDE's:

— Let St = ut + o B¢, where By is a standard Brownian motion. To determine an SDE, note that by definition:

n1oo

ie., td = %

dB; = dBs.

/ / ' ] Bt = lim B = }Llfglojgl (Bj — Bj-1) = fo 1dBt, [;)J - B(Z[d )

Combining this with linearity of the Itd integral and our usual understanding of the deterministic differential, we
conclude:

T T
S = J pdt + J od By = dSt = pdt 4+ odBg.
0 0

\/\/\/\,

S«,: /MT - O\BT
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Some examples D23-S03(b)

Here are some examples of SDE's:
— Let St = ut + o B¢, where By is a standard Brownian motion. To determine an SDE, note that by definition:

1

Bt = lim By = lim B, —B;_ :f 1d By,
=i 5050 [as

n1oo

dB; = dBs.

Combining this with linearity of the Itd integral and our usual understanding of the deterministic differential, we
conclude:

T T
S = J ,Lbdt + J od B4 — dsS; = [,Ldt + odB4.
0 0

— From last time: [(: Cl@t >y <{;f J 6/}5 )

=
d(B?) = dt 4+ 2B.dBy (Ol ?(20{)( 71’(: u/x)l M(X)
/7

R
wEY? X
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[t6 processes and diffusion D23-S04(a)

Stochastic processes that are driven by Brownian motion have special terminology:

‘“Bzﬁ) thff 28.50/1%
/M(z’, [22)? l

2) <
where pu(-,-) and o(+,-) are deterministic functions (“drift” and “volatility”, respectively). O\/{, l?i J* 2/ BE

Suppose X is a stochastic process satisfying,

dX; = /J(Xt,t)dt + O'(Xt, t)dBt,

Then X is called an Ité process.
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|t6 processes and diffusion D23-S04(b)

Stochastic processes that are driven by Brownian motion have special terminology:
Suppose X is a stochastic process satisfying,

dX: = p(Xe, t)dt + o(X¢, t)d By,
where pu(-,-) and o(+,-) are deterministic functions (“drift” and “volatility”, respectively).

Then X is called an Ité process.

If w=p(-) and o0 =0o(+), ie,
dX; = /J(Xt)dt + U(Xt)dBt,

then X; is an Ité diffusion.
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Change of variables D23-S05(a)

A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

What differential equation does y := f(x,t) satisfy?

i - 4 = 2t df
Zf/{}j i Fixli) t) 4 a;f/l%’

%‘: ‘gj'& +/¢(>¢i)2’§€
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Change of variables

A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

What differential equation does y := f(x,t) satisfy?

Through a simple application of the chain rule, we obtain:

dx

R -t

” p(z;t)
dy of of /

—~ =y
dt ot + 8:1833 (*)
of of
- 4 4 7L -t

Pl amu(u, )

D23-505(b)

A. Narayan
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Change of variables D23-505(c)

A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

dx
5 = M)
What differential equation does y := f(x,t) satisfy?

Through a simple application of the chain rule, we obtain:

d_y a_‘f + a_fx/(t)

dt ot ox
of | of
= L 4 L . ¢
o T pust)
If X is a trivial It process:
dX: = pu(Xy, t)dt, (c =0)

then the standard chain rule would apply for Y; = f(X¢,1):
0 0
dY; = (—f(Xt,t) + /J(Xt,t)—f(Xt,t)> dt.
ot ox

But this does not apply for o # 0.
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It6's Lemma
The corresponding chain rule-like result that includes the volatility is the following.

Lemma (Ité's Lemma)

Let X; be an Ité process:

dX; = ,U,(Xt,t)dt + O'(Xt, t)dBt.

drift of ¥

Define Yi = f(X¢,t). Then Y is an It6é process, and satisfies the SDE, t
e 2 2
0 0 X¢,t) 0
4%, = (2 (x0,0) + w0, ) L ) + TELD T 5, ) ar
ot ox 2 ox?

0
+ O’(Xt, t) a—i (Xt, t)dBt

Volah | IB of Vb-

D23-506(a)
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It6's Lemma D23-S06(b)

The corresponding chain rule-like result that includes the volatility is the following.

Lemma (Ité's Lemma)

Let X; be an Ité process:
dX: = p(Xe, t)dt + o(Xe, t)dBs.

Define Yi = f(X¢,t). Then Y is an It6é process, and satisfies the SDE,

of of o*(Xt,t) O*f
dY: = | —(X4,t X, t) — (X, t

(X¢, t)) dt

%
+ (X1, 0) 2L (X2, ),

More compactly: if we drop the explicit notational dependence on ¢, X, and use ft, fz, fz= to denote partial
derivatives then:

dY = puydt + oydB,
with
0.2
MY:ft+Hfm+7fmx, O'Y:O'fx.
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Some intuition D23-S07(a)

Most of I1té6's lemma is immediately motivated from deterministic calculus. 7 ,
l.e., from the standard chain rule on deterministic quantities: (/ <//(
dy _of |
t) = f(z(t),1), t
y(t) = F((t),) = ),

x({)

we already expect that:

dY: = fidt + fz (udt + cdB)
= (ft + pfz)dt + o fodB.

. ~l . - 2
But in 1t6's lemma, there is an additional %fxmdt term.
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Some intuition

Most of I1té6's lemma is immediately motivated from deterministic calculus.

l.e., from the standard chain rule on deterministic quantities:

dy _ f

y(t) = (), 0) o=y

we already expect that:

dY: = fidt + fz (udt + cdB)

= (ft + pfz)dt + o fodB.

. ~l . - 2
But in 1t6's lemma, there is an additional %fxmdt term.

This term arises because [B]: = t, or (dB;)? = dt:

D23-507(b)

( t),

FX(t+ AL, t + At) — f(X(t),t) = ft At + (X (t + At) — X (1)) f«

+ %(X(t+At)

- X)Qfxa; +

The first-order derivatives yield what we already expect. The second order term yields,

1 1 1
5(X(t + At) — X)2 frow ~ 5 (pdt + 0dB¢)? fue ~ §o2fm(dBt)2

1
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Some utility of Ité's Lemma D23-S08(a)

Ité's Lemma is extremely useful in general, but some utility that is particularly useful for us is the ability to identify
SDEs for processes.

Example
Recall that

d(B?) = dt + 2Bd B

Construct an SDE for e(Bt2)+t, and identify the drift and volatility functions.
= ) _
F st Show SDE G Bt : &P{«de //A:@, @c/)

(=B, fly)= v )
JL V=PI L) C}BJG//N/”&J’?%
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Geometric Brownian Motion D23-509(a)

Back to securities, we assumed availability of continuous-time drift and volatility (u, o).

We've seen that a reasonable stochastic model for the log-return L(t) is,

Ly = pt +0Bt, =) C]L(- :/ACH f O\O]Eé

where B; is a standard Brownian motion.
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Geometric Brownian Motion D23-S09(b)

Back to securities, we assumed availability of continuous-time drift and volatility (u, o).

We've seen that a reasonable stochastic model for the log-return L(t) is,
Li = put + 0By,

where B; is a standard Brownian motion.

We then expect that a reasonable model for the security price is,

St = S()eLt = S()e'ut_l_oBt.

What kind of SDE does S; satisfy?
_e L
< AL adir odf, SESET 2 Ll b)) ) Sex
of 3 . Y
—55 - @ 'J/x g = L

. 92 o
JEvE igf(%&* Y L)o’% + (I;((TL/&
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Geometric Brownian Motion D23-S09(c)

Back to securities, we assumed availability of continuous-time drift and volatility (u, o).

We've seen that a reasonable stochastic model for the log-return L(t) is,
Li = put + 0By,

where B; is a standard Brownian motion.

We then expect that a reasonable model for the security price is,
St = SoeLt = S()e“t_l_oBt.

What kind of SDE does S; satisfy?

Definition

Let i, o be constants, o > 0. With B; a standard Brownian motion, suppose St is a stochastic process defined by,
dS: = uSdt + 0S¢d By, S(t = 0) = 9Sp.

Then S; is a Geometric Brownian Motion with drift and volatility (u, o).
Vote - Y hese (5 CL#F/“P/VF fam  ow CKR/A

2
/MCKA ! Cﬁfz > 0= Ocgp /4" Meap” 2(70%

A. Narayan (U. Utah — Math/SCI) Math 5760/6890: Stochastic Differential Equations, 11




Geometric Brownian Motion D23-509(d)

Back to securities, we assumed availability of continuous-time drift and volatility (u, o).

We've seen that a reasonable stochastic model for the log-return L(t) is,
Li = put + 0By,

where B; is a standard Brownian motion.

We then expect that a reasonable model for the security price is,
St = SoeLt = Soeut—i_UBt.
What kind of SDE does S; satisfy?
Definition
Let i, o be constants, o > 0. With B; a standard Brownian motion, suppose St is a stochastic process defined by,
dSt = uSidt + 05td By, S(t = 0) =90.
Then S; is a Geometric Brownian Motion with drift and volatility (u, o).

Note that S; as defined above corresponds to the process,

Sy = Soe(u—az/Q)t-i-UBt),

which is a lognormal ((,u — %2) t,02t> random variable.
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The gist and summary D23-S10(a)

We set out to construct a continuous-time analogue of the binomial tree model for securities.

— Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,
dSt = puSidt + 0Std By,

is our model.
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The gist and summary D23-S10(b)

We set out to construct a continuous-time analogue of the binomial tree model for securities.

— Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,
dSt = puSidt + 0Std By,

is our model.

— This is a stochastic model for an asset: given historical data, we can simulate future trajectories of stock prices
by numerically discretizing this model.
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The gist and summary D23-510(c)

We set out to construct a continuous-time analogue of the binomial tree model for securities.

— Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,
dSt = puSidt + 0Std By,

is our model.

— This is a stochastic model for an asset: given historical data, we can simulate future trajectories of stock prices
by numerically discretizing this model.

— This model can be viewed as the continuous-time limit of the CRR model for S),: the price of S, in the CRR

model evolves according to geometric increments. Geometric Brownian motion follows a similar principle (as the
SDE reveals).
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The gist and summary D23-510(d)

We set out to construct a continuous-time analogue of the binomial tree model for securities.

— Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,
dSt = puSidt + 0Std By,

is our model.

— This is a stochastic model for an asset: given historical data, we can simulate future trajectories of stock prices
by numerically discretizing this model.

— This model can be viewed as the continuous-time limit of the CRR model for S),: the price of S, in the CRR

model evolves according to geometric increments. Geometric Brownian motion follows a similar principle (as the
SDE reveals).

— One nice thing about the SDE formulation: it's ok if i or o vary with time, or even depend on St. This model
is flexible.
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Simulating SDEs D23-S11(a)

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The model is,
dS: = pSidt + 0S¢d By, S(t=0)=250.
Given an equispaced set of times,
t; = hj, h >0,

and for notational ease setting S¢; = S;, then how do we generate a trajectory?
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Simulating SDEs D23-S11(b)

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The model is,
dS: = pSidt + 0S¢d By, S(t=0)=250.
Given an equispaced set of times,
t; = hj, h >0,

and for notational ease setting S¢; = S;, then how do we generate a trajectory? = The discrete differential form of
the SDE provides one possible simple answer: v

Sj+1 = S8 = pSj(tj+1 —t5) + 05;(Bj+1 — Bj).

W N
d$ d¢ <) J8,
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Simulating SDEs D23-S11(c)

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The model is,
dS: = pSidt + 0S¢d By, S(t=0)=250.
Given an equispaced set of times,
t; = hj, h >0,

and for notational ease setting S¢; = S;, then how do we generate a trajectory? The discrete differential form of
the SDE provides one possible simple answer:

Sj+1 = S8j = pSj(tj+1 —t5) + 05;(Bj+1 — Bj).
But tj11 —t; = h, and Bjy1 — B; ~ N (0, h), so this scheme can be written as,
Si+1 = S; + phS; + 0S;VhZ, Z ~ N(0,1),
with Sy given and fixed. :—S\j //#/,\/\ t o h2 )

This scheme is called the Euler-Maruyama method.
(This is exactly how Brownian motion figures were generated on previous slides.)
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A digression on SDEs D23-S12(a)

We won't really use SDE’s in more complicated situations than we've covered.

But SDEs are enormously useful in various non-finance contexts.
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A digression on SDEs D23-S12(b)

We won't really use SDE’s in more complicated situations than we've covered.

But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through the drift, and the
volatility provides a mechanism to generate randomness around the target.

Around the target is key: of course we can generate completely random things that might not make sense.
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A digression on SDEs D23-S12(c)

We won't really use SDE’s in more complicated situations than we've covered.
But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through the drift, and the
volatility provides a mechanism to generate randomness around the target.

Around the target is key: of course we can generate completely random things that might not make sense.

Suppose we tried to generate random images of objects or scenarios: Abstractly, what this means is that there
should be a pipeline that accomplishes:

“Mathematics taking over the world” —  “Drift" u —  Generate SDE trajectories
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A digression on SDEs D23-S12(d)

We won't really use SDE’s in more complicated situations than we've covered.
But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through the drift, and the
volatility provides a mechanism to generate randomness around the target.

Around the target is key: of course we can generate completely random things that might not make sense.

Suppose we tried to generate random images of objects or scenarios: Abstractly, what this means is that there
should be a pipeline that accomplishes:

“Mathematics taking over the world" —  “Drift" u —  Generate SDE trajectories

That should generate an output like:
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SDEs for images D23-S13(a)

Or even more abstractly, the input “target” can be an image itself:

\ : |
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Diffusion maps D23-S14(a)

This methodology is called creating a diffusion map, although there are many variants.
And this is exactly what certain generative Al software does, in particular image-based Al generators.

SDEs are a large part of the mathematics that underlie these deep learning-based models.
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Diffusion maps D23-S14(b)

This methodology is called creating a diffusion map, although there are many variants.
And this is exactly what certain generative Al software does, in particular image-based Al generators.
SDEs are a large part of the mathematics that underlie these deep learning-based models.

The key, very difficult problem is a proper learning of the drift: one has to hit the right target in image space.
(Of course one should also add “noise” in the right ways.)

This is why most diffusion-based generative Al models require lots of data: training the drift and volatility so that
the SDE evolution generates meaningful outputs is very hard.

(The figures on the previous slides were generated using Copilot and DALL-E.)
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