
Math 5760/6890: Introduction to Mathematical Finance

Geometric Brownian Motion and SDE’s
See Petters and Dong 2016, Section 6.7-6.8

Akil Narayan1

1Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

Fall 2024

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Stochastic Differential Equations, II

 



Brownian motion and stochastic integration D23-S02(a)

We have introduced the stochastic process Brownian motion, Bt “ Bptq.
– P pBptq “ 0q “ 1

– B is continuous with probability 1
– The n sequential increments formed by any choice of n ` 1 ordered time points t1, . . . , tn`1 are mutually

independent
– For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.

Using this, we have defined the Itô integral:
ª T

0
fptqdBt “ lim

nÒ8

nÿ

j“1

fptj´1qpBptjq ´ Bptj´1qq, tj “ jT

n
.

The Itô integral can be used to notationally define differentials and (stochastic) differential equations:

XT :“
ª T

0
fptqdBt ñ dXt “ fptqdBt.

It is this differential notation that we will mostly exercise moving forward.
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Brownian motion and stochastic integration D23-S02(b)

We have introduced the stochastic process Brownian motion, Bt “ Bptq.
– P pBptq “ 0q “ 1

– B is continuous with probability 1
– The n sequential increments formed by any choice of n ` 1 ordered time points t1, . . . , tn`1 are mutually

independent
– For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.

Using this, we have defined the Itô integral:
ª T

0
fptqdBt “ lim

nÒ8

nÿ

j“1

fptj´1qpBptjq ´ Bptj´1qq, tj “ jT

n
.

The Itô integral can be used to notationally define differentials and (stochastic) differential equations:

XT :“
ª T

0
fptqdBt ñ dXt “ fptqdBt.

It is this differential notation that we will mostly exercise moving forward.
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Brownian motion and stochastic integration D23-S02(c)

We have introduced the stochastic process Brownian motion, Bt “ Bptq.
– P pBptq “ 0q “ 1

– B is continuous with probability 1
– The n sequential increments formed by any choice of n ` 1 ordered time points t1, . . . , tn`1 are mutually

independent
– For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.

Using this, we have defined the Itô integral:
ª T

0
fptqdBt “ lim

nÒ8

nÿ

j“1

fptj´1qpBptjq ´ Bptj´1qq, tj “ jT

n
.

The Itô integral can be used to notationally define differentials and (stochastic) differential equations:

XT :“
ª T

0
fptqdBt ñ dXt “ fptqdBt.

It is this differential notation that we will mostly exercise moving forward.
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Some examples D23-S03(a)

Here are some examples of SDE’s:
– Let St “ µt ` �Bt, where Bt is a standard Brownian motion. To determine an SDE, note that by definition:

Bt “ lim
nÒ8

Bt “ lim
nÒ8

nÿ

j“1

pBj ´ Bj´1q “
ª T

0
1dBt,

i.e.,

dBt “ dBt.

Combining this with linearity of the Itô integral and our usual understanding of the deterministic differential, we
conclude:

ST “
ª T

0
µdt `

ª T

0
�dBt ùñ dSt “ µdt ` �dBt.

– From last time:

dpB2
t q “ dt ` 2BtdBt
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Some examples D23-S03(b)

Here are some examples of SDE’s:
– Let St “ µt ` �Bt, where Bt is a standard Brownian motion. To determine an SDE, note that by definition:

Bt “ lim
nÒ8

Bt “ lim
nÒ8

nÿ

j“1

pBj ´ Bj´1q “
ª T

0
1dBt,

i.e.,

dBt “ dBt.

Combining this with linearity of the Itô integral and our usual understanding of the deterministic differential, we
conclude:

ST “
ª T

0
µdt `

ª T

0
�dBt ùñ dSt “ µdt ` �dBt.

– From last time:

dpB2
t q “ dt ` 2BtdBt
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Itô processes and diffusion D23-S04(a)

Stochastic processes that are driven by Brownian motion have special terminology:

Suppose Xt is a stochastic process satisfying,

dXt “ µpXt, tqdt ` �pXt, tqdBt,

where µp¨, ¨q and �p¨, ¨q are deterministic functions (“drift” and “volatility”, respectively).

Then Xt is called an Itô process.

If µ “ µp¨q and � “ �p¨q, i.e.,

dXt “ µpXtqdt ` �pXtqdBt,

then Xt is an Itô diffusion.
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Itô processes and diffusion D23-S04(b)

Stochastic processes that are driven by Brownian motion have special terminology:

Suppose Xt is a stochastic process satisfying,

dXt “ µpXt, tqdt ` �pXt, tqdBt,

where µp¨, ¨q and �p¨, ¨q are deterministic functions (“drift” and “volatility”, respectively).

Then Xt is called an Itô process.

If µ “ µp¨q and � “ �p¨q, i.e.,

dXt “ µpXtqdt ` �pXtqdBt,

then Xt is an Itô diffusion.
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Change of variables D23-S05(a)
A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

dx

dt
“ µpx; tq

What differential equation does y :“ fpx, tq satisfy?

Through a simple application of the chain rule, we obtain:

dy

dt
“ Bf

Bt ` Bf
Bxx1ptq

“ Bf
Bt ` Bf

Bxµpu; tq

If Xt is a trivial Itô process:

dXt “ µpXt, tqdt, p� ” 0q

then the standard chain rule would apply for Yt “ fpXt, tq:

dYt “
ˆ Bf

Bt pXt, tq ` µpXt, tq Bf
Bx pXt, tq

˙
dt.

But this does not apply for � ‰ 0.
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Change of variables D23-S05(b)
A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

dx

dt
“ µpx; tq

What differential equation does y :“ fpx, tq satisfy?

Through a simple application of the chain rule, we obtain:

dy

dt
“ Bf

Bt ` Bf
Bxx1ptq

“ Bf
Bt ` Bf

Bxµpu; tq

If Xt is a trivial Itô process:

dXt “ µpXt, tqdt, p� ” 0q

then the standard chain rule would apply for Yt “ fpXt, tq:

dYt “
ˆ Bf

Bt pXt, tq ` µpXt, tq Bf
Bx pXt, tq

˙
dt.

But this does not apply for � ‰ 0.
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Change of variables D23-S05(c)
A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

dx

dt
“ µpx; tq

What differential equation does y :“ fpx, tq satisfy?

Through a simple application of the chain rule, we obtain:

dy

dt
“ Bf

Bt ` Bf
Bxx1ptq

“ Bf
Bt ` Bf

Bxµpu; tq

If Xt is a trivial Itô process:

dXt “ µpXt, tqdt, p� ” 0q

then the standard chain rule would apply for Yt “ fpXt, tq:

dYt “
ˆ Bf

Bt pXt, tq ` µpXt, tq Bf
Bx pXt, tq

˙
dt.

But this does not apply for � ‰ 0.
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Itô’s Lemma D23-S06(a)
The corresponding chain rule-like result that includes the volatility is the following.

Lemma (Itô’s Lemma)
Let Xt be an Itô process:

dXt “ µpXt, tqdt ` �pXt, tqdBt.

Define Yt “ fpXt, tq. Then Yt is an Itô process, and satisfies the SDE,

dYt “
ˆ Bf

Bt pXt, tq ` µpXt, tq Bf
Bx pXt, tq ` �2pXt, tq

2

B2f

Bx2
pXt, tq

˙
dt

` �pXt, tq Bf
Bx pXt, tqdBt

More compactly: if we drop the explicit notational dependence on t,Xt, and use ft, fx, fxx to denote partial
derivatives then:

dY “ µY dt ` �Y dB,

with

µY “ ft ` µfx ` �2

2
fxx, �Y “ �fx.
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Itô’s Lemma D23-S06(b)
The corresponding chain rule-like result that includes the volatility is the following.

Lemma (Itô’s Lemma)
Let Xt be an Itô process:

dXt “ µpXt, tqdt ` �pXt, tqdBt.

Define Yt “ fpXt, tq. Then Yt is an Itô process, and satisfies the SDE,

dYt “
ˆ Bf

Bt pXt, tq ` µpXt, tq Bf
Bx pXt, tq ` �2pXt, tq

2

B2f

Bx2
pXt, tq

˙
dt

` �pXt, tq Bf
Bx pXt, tqdBt

More compactly: if we drop the explicit notational dependence on t,Xt, and use ft, fx, fxx to denote partial
derivatives then:

dY “ µY dt ` �Y dB,

with

µY “ ft ` µfx ` �2

2
fxx, �Y “ �fx.
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Some intuition D23-S07(a)
Most of Itô’s lemma is immediately motivated from deterministic calculus.

I.e., from the standard chain rule on deterministic quantities:

yptq “ fpxptq, tq, ùñ dy

dt
“ Bf

Bt ` Bf
Bxµpu; tq,

we already expect that:

dYt “ ftdt ` fx pµdt ` �dBq
“ pft ` µfxq dt ` �fxdB.

But in Itô’s lemma, there is an additional �2

2 fxxdt term.

This term arises because rBst “ t, or pdBtq2 “ dt:

fpXpt ` �tq, t ` �tq ´ fpXptq, tq «ft�t ` pXpt ` �tq ´ Xptqqfx
` 1

2
pXpt ` �tq ´ Xq2fxx ` . . .

The first-order derivatives yield what we already expect. The second order term yields,

1

2
pXpt ` �tq ´ Xq2fxx „ 1

2
pµdt ` �dBtq2 fxx „ 1

2
�2fxxpdBtq2 ` . . . “ 1

2
�2fxxdt ` . . .
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Some intuition D23-S07(b)
Most of Itô’s lemma is immediately motivated from deterministic calculus.

I.e., from the standard chain rule on deterministic quantities:

yptq “ fpxptq, tq, ùñ dy

dt
“ Bf

Bt ` Bf
Bxµpu; tq,

we already expect that:

dYt “ ftdt ` fx pµdt ` �dBq
“ pft ` µfxq dt ` �fxdB.

But in Itô’s lemma, there is an additional �2

2 fxxdt term.

This term arises because rBst “ t, or pdBtq2 “ dt:

fpXpt ` �tq, t ` �tq ´ fpXptq, tq «ft�t ` pXpt ` �tq ´ Xptqqfx
` 1

2
pXpt ` �tq ´ Xq2fxx ` . . .

The first-order derivatives yield what we already expect. The second order term yields,

1

2
pXpt ` �tq ´ Xq2fxx „ 1

2
pµdt ` �dBtq2 fxx „ 1

2
�2fxxpdBtq2 ` . . . “ 1

2
�2fxxdt ` . . .
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Some utility of Itô’s Lemma D23-S08(a)

Itô’s Lemma is extremely useful in general, but some utility that is particularly useful for us is the ability to identify
SDEs for processes.

Example
Recall that

dpB2
t q “ dt ` 2BtdBt

Construct an SDE for epB2
t q`t, and identify the drift and volatility functions.
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Geometric Brownian Motion D23-S09(a)
Back to securities, we assumed availability of continuous-time drift and volatility pµ,�q.

We’ve seen that a reasonable stochastic model for the log-return Lptq is,

Lt “ µt ` �Bt,

where Bt is a standard Brownian motion.

We then expect that a reasonable model for the security price is,

St “ S0e
Lt “ S0e

µt`�Bt .

What kind of SDE does St satisfy?

Definition
Let µ,� be constants, � ° 0. With Bt a standard Brownian motion, suppose St is a stochastic process defined by,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Then St is a Geometric Brownian Motion with drift and volatility pµ,�q.
Note that St as defined above corresponds to the process,

St “ S0e
pµ´�2{2qt`�Btq,

which is a lognormal
´´

µ ´ �2

2

¯
t,�2t

¯
random variable.
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Geometric Brownian Motion D23-S09(b)
Back to securities, we assumed availability of continuous-time drift and volatility pµ,�q.

We’ve seen that a reasonable stochastic model for the log-return Lptq is,

Lt “ µt ` �Bt,

where Bt is a standard Brownian motion.

We then expect that a reasonable model for the security price is,

St “ S0e
Lt “ S0e

µt`�Bt .

What kind of SDE does St satisfy?

Definition
Let µ,� be constants, � ° 0. With Bt a standard Brownian motion, suppose St is a stochastic process defined by,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Then St is a Geometric Brownian Motion with drift and volatility pµ,�q.
Note that St as defined above corresponds to the process,

St “ S0e
pµ´�2{2qt`�Btq,

which is a lognormal
´´

µ ´ �2

2

¯
t,�2t

¯
random variable.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Stochastic Differential Equations, II





Geometric Brownian Motion D23-S09(c)
Back to securities, we assumed availability of continuous-time drift and volatility pµ,�q.

We’ve seen that a reasonable stochastic model for the log-return Lptq is,

Lt “ µt ` �Bt,

where Bt is a standard Brownian motion.

We then expect that a reasonable model for the security price is,

St “ S0e
Lt “ S0e

µt`�Bt .

What kind of SDE does St satisfy?

Definition
Let µ,� be constants, � ° 0. With Bt a standard Brownian motion, suppose St is a stochastic process defined by,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Then St is a Geometric Brownian Motion with drift and volatility pµ,�q.
Note that St as defined above corresponds to the process,

St “ S0e
pµ´�2{2qt`�Btq,

which is a lognormal
´´

µ ´ �2

2

¯
t,�2t

¯
random variable.
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Geometric Brownian Motion D23-S09(d)
Back to securities, we assumed availability of continuous-time drift and volatility pµ,�q.

We’ve seen that a reasonable stochastic model for the log-return Lptq is,

Lt “ µt ` �Bt,

where Bt is a standard Brownian motion.

We then expect that a reasonable model for the security price is,

St “ S0e
Lt “ S0e

µt`�Bt .

What kind of SDE does St satisfy?

Definition
Let µ,� be constants, � ° 0. With Bt a standard Brownian motion, suppose St is a stochastic process defined by,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Then St is a Geometric Brownian Motion with drift and volatility pµ,�q.
Note that St as defined above corresponds to the process,

St “ S0e
pµ´�2{2qt`�Btq,

which is a lognormal
´´

µ ´ �2

2

¯
t,�2t

¯
random variable.
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The gist and summary D23-S10(a)

We set out to construct a continuous-time analogue of the binomial tree model for securities.

– Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,

dSt “ µStdt ` �StdBt,

is our model.
– This is a stochastic model for an asset: given historical data, we can simulate future trajectories of stock prices

by numerically discretizing this model.
– This model can be viewed as the continuous-time limit of the CRR model for Sn: the price of Sn in the CRR

model evolves according to geometric increments. Geometric Brownian motion follows a similar principle (as the
SDE reveals).

– One nice thing about the SDE formulation: it’s ok if µ or � vary with time, or even depend on St. This model
is flexible.
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The gist and summary D23-S10(b)

We set out to construct a continuous-time analogue of the binomial tree model for securities.

– Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,

dSt “ µStdt ` �StdBt,

is our model.
– This is a stochastic model for an asset: given historical data, we can simulate future trajectories of stock prices

by numerically discretizing this model.
– This model can be viewed as the continuous-time limit of the CRR model for Sn: the price of Sn in the CRR

model evolves according to geometric increments. Geometric Brownian motion follows a similar principle (as the
SDE reveals).

– One nice thing about the SDE formulation: it’s ok if µ or � vary with time, or even depend on St. This model
is flexible.
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The gist and summary D23-S10(c)

We set out to construct a continuous-time analogue of the binomial tree model for securities.

– Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,

dSt “ µStdt ` �StdBt,

is our model.
– This is a stochastic model for an asset: given historical data, we can simulate future trajectories of stock prices

by numerically discretizing this model.
– This model can be viewed as the continuous-time limit of the CRR model for Sn: the price of Sn in the CRR

model evolves according to geometric increments. Geometric Brownian motion follows a similar principle (as the
SDE reveals).

– One nice thing about the SDE formulation: it’s ok if µ or � vary with time, or even depend on St. This model
is flexible.
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The gist and summary D23-S10(d)

We set out to construct a continuous-time analogue of the binomial tree model for securities.

– Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,

dSt “ µStdt ` �StdBt,

is our model.
– This is a stochastic model for an asset: given historical data, we can simulate future trajectories of stock prices

by numerically discretizing this model.
– This model can be viewed as the continuous-time limit of the CRR model for Sn: the price of Sn in the CRR

model evolves according to geometric increments. Geometric Brownian motion follows a similar principle (as the
SDE reveals).

– One nice thing about the SDE formulation: it’s ok if µ or � vary with time, or even depend on St. This model
is flexible.
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Simulating SDEs D23-S11(a)

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The model is,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Given an equispaced set of times,

tj “ hj, h ° 0,

and for notational ease setting Stj “ Sj , then how do we generate a trajectory? The discrete differential form of
the SDE provides one possible simple answer:

Sj`1 ´ Sj “ µSjptj`1 ´ tjq ` �SjpBj`1 ´ Bjq.

But tj`1 ´ tj “ h, and Bj`1 ´ Bj „ N p0, hq, so this scheme can be written as,

Sj`1 “ Sj ` µhSj ` �Sj

?
hZ, Z „ N p0, 1q,

with S0 given and fixed.

This scheme is called the Euler-Maruyama method.
(This is exactly how Brownian motion figures were generated on previous slides.)
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Simulating SDEs D23-S11(b)

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The model is,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Given an equispaced set of times,

tj “ hj, h ° 0,

and for notational ease setting Stj “ Sj , then how do we generate a trajectory? The discrete differential form of
the SDE provides one possible simple answer:

Sj`1 ´ Sj “ µSjptj`1 ´ tjq ` �SjpBj`1 ´ Bjq.

But tj`1 ´ tj “ h, and Bj`1 ´ Bj „ N p0, hq, so this scheme can be written as,

Sj`1 “ Sj ` µhSj ` �Sj

?
hZ, Z „ N p0, 1q,

with S0 given and fixed.

This scheme is called the Euler-Maruyama method.
(This is exactly how Brownian motion figures were generated on previous slides.)
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Simulating SDEs D23-S11(c)

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The model is,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Given an equispaced set of times,

tj “ hj, h ° 0,

and for notational ease setting Stj “ Sj , then how do we generate a trajectory? The discrete differential form of
the SDE provides one possible simple answer:

Sj`1 ´ Sj “ µSjptj`1 ´ tjq ` �SjpBj`1 ´ Bjq.

But tj`1 ´ tj “ h, and Bj`1 ´ Bj „ N p0, hq, so this scheme can be written as,

Sj`1 “ Sj ` µhSj ` �Sj

?
hZ, Z „ N p0, 1q,

with S0 given and fixed.

This scheme is called the Euler-Maruyama method.
(This is exactly how Brownian motion figures were generated on previous slides.)
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A digression on SDEs D23-S12(a)
We won’t really use SDE’s in more complicated situations than we’ve covered.

But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through the drift, and the
volatility provides a mechanism to generate randomness around the target.

Around the target is key: of course we can generate completely random things that might not make sense.

Suppose we tried to generate random images of objects or scenarios: Abstractly, what this means is that there
should be a pipeline that accomplishes:

“Mathematics taking over the world” Ñ “Drift” µ Ñ Generate SDE trajectories
That should generate an output like:
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A digression on SDEs D23-S12(b)
We won’t really use SDE’s in more complicated situations than we’ve covered.

But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through the drift, and the
volatility provides a mechanism to generate randomness around the target.

Around the target is key: of course we can generate completely random things that might not make sense.

Suppose we tried to generate random images of objects or scenarios: Abstractly, what this means is that there
should be a pipeline that accomplishes:

“Mathematics taking over the world” Ñ “Drift” µ Ñ Generate SDE trajectories
That should generate an output like:
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A digression on SDEs D23-S12(c)
We won’t really use SDE’s in more complicated situations than we’ve covered.

But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through the drift, and the
volatility provides a mechanism to generate randomness around the target.

Around the target is key: of course we can generate completely random things that might not make sense.

Suppose we tried to generate random images of objects or scenarios: Abstractly, what this means is that there
should be a pipeline that accomplishes:

“Mathematics taking over the world” Ñ “Drift” µ Ñ Generate SDE trajectories
That should generate an output like:
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A digression on SDEs D23-S12(d)
We won’t really use SDE’s in more complicated situations than we’ve covered.

But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through the drift, and the
volatility provides a mechanism to generate randomness around the target.

Around the target is key: of course we can generate completely random things that might not make sense.

Suppose we tried to generate random images of objects or scenarios: Abstractly, what this means is that there
should be a pipeline that accomplishes:

“Mathematics taking over the world” Ñ “Drift” µ Ñ Generate SDE trajectories
That should generate an output like:
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SDEs for images D23-S13(a)
Or even more abstractly, the input “target” can be an image itself:

And the output could be SDE-based stochastic diffusions of the input:
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Diffusion maps D23-S14(a)

This methodology is called creating a diffusion map, although there are many variants.

And this is exactly what certain generative AI software does, in particular image-based AI generators.

SDEs are a large part of the mathematics that underlie these deep learning-based models.

The key, very difficult problem is a proper learning of the drift: one has to hit the right target in image space.
(Of course one should also add “noise” in the right ways.)

This is why most diffusion-based generative AI models require lots of data: training the drift and volatility so that
the SDE evolution generates meaningful outputs is very hard.

(The figures on the previous slides were generated using Copilot and DALL-E.)
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Diffusion maps D23-S14(b)

This methodology is called creating a diffusion map, although there are many variants.

And this is exactly what certain generative AI software does, in particular image-based AI generators.

SDEs are a large part of the mathematics that underlie these deep learning-based models.

The key, very difficult problem is a proper learning of the drift: one has to hit the right target in image space.
(Of course one should also add “noise” in the right ways.)

This is why most diffusion-based generative AI models require lots of data: training the drift and volatility so that
the SDE evolution generates meaningful outputs is very hard.

(The figures on the previous slides were generated using Copilot and DALL-E.)
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