Department of Mathematics, University of Utah Applied Complex Variables and Asymptotic Methods MTH6720 - Section 01 - Spring 2023

Midterm formula sheet

1. Given any integer k, a point $a \in \mathbb{C}$, and a simple closed loop C not intersecting a, then,

$$
\oint_{C}(z-a)^{k} \mathrm{~d} z=\left\{\begin{array}{cl}
2 \pi i, & k=-1 \text { and } C \text { encloses } a \\
0, & \text { otherwise }
\end{array}\right.
$$

2. Suppose f is analytic on an open domain containing a simple closed loop C. Then for all integers $n \geq 0$ and all z enclosed by C,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(w)}{(w-z)^{n+1}} \mathrm{~d} w
$$

3. The coefficients for a Laurent series of the function f are given by,

$$
c_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{(w-z)^{n+1}} \mathrm{~d} w
$$

4. If a continuous f is bounded over a contour C of finite length, i.e., $|f(z)| \leq M<\infty$ for all $z \in C$ and $\int_{C}|\mathrm{~d} z|=L<\infty$, then

$$
\left|\int_{C} f(z) \mathrm{d} z\right| \leq M L
$$

Name:

This test is:

- closed-book
- closed-notes (but you may refer to the formula sheet provided)
- no-calculator
- 50 minutes

Indicate your answers clearly, and show your work. Partial credit will be awarded based on work shown. Full credit will not be awarded without some work shown.

There are 4 questions, some with multiple parts. You are required to complete question 1, and in addition you must complete two out of three problems of your choice from questions 2,3 , and 4 . Each question you complete is worth a total of 20 points. (60 points total)

The anatomy of this midterm is as follows:

- Cover page (this page)
- A single page containing the statements for all 4 questions (one page, no space for work)
- You are given a separate blue book in which to complete the questions.

