DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH
Applied Complex Variables and Asymptotic Methods
MATH 6720 — Section 001 — Spring 2023
Homework 5
Computing Integrals

Due: Friday, April 7, 2023

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 4.3.2

4.3.3

4.3.7, part (a) only. Note that 0 < k < 1 is the correct restriction on k.

4.3.13, only compute the first integral, i.e., the one involving z'/2log z.

In addition, for this section the text considers the principal branch of log z
and z'/2 to correspond to z = re? for 6 € [0, 2n).
Submit your homework assignment on Canvas via Gradescope.

4.3.2. Show that,

*  sinz s 1
—_——dz==(1-~-].
/0 (2?2 +1) o 2( e)

Solution: We start by defining,

Then we have,

J::/0 f(z)dz, I=Im(J),

where [ is the integral we seek to compute. We will evaluate J using the Cauchy Residue
Theorem, with a closed loop consisting of (i) a radius R semicircular contour Cr centered at
0 in the upper half-place with large R, (ii) the integral along the real interval I_ = (—R, —e¢)
for € > 0 small, (iii) the semicirular contour C. in the upper half plane centered at 0, (iv)
the integral along the real interval I, = (e, R). We will take limits as R 1 oo and € | 0. We
proceed to compute these integrals.

First, we have that,

0
lig{l) /Ce f(2)dz = —imRes(f;0) = _m(();i—l—l) = —iT.
since C, sweeps out an angle of m with clockwise orientation. For |z| = R > 1, we have,
1 1 R—o0
< — 0,
z(22 + 1)‘ ~ R(R?-1)
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and hence by Jordan’s Lemma,

li dz = li ———7dz=0.
A Jo T T A fo s

We next compute the two integrals on the real line:

lim /I+ f(z)dz = J,

e—0t,R—00

and

00 e—ix -
li dz = li — ————dx = —J.
eaO'*‘l,rgﬁ\oo /[ J(z)dz eHO'*‘l,r]r%lﬂoo /E x(z?2 +1) v
Finally, the only residue of f in the upper half plane is located at z = i:
-1

. ) . € s
2miRes(f;i) = 2mi(2i) =

Finally, the Cauchy Residue Theorem yields:

lim [ f(z)dz + f(z)dz + / f(z)dz + f(2) dz} = 2miRes(f;1),
Cr I C. I;

e—~01t,R—o00
i.e.,
i

. —= 1 s s 1

4.3.3. Show that,

® cosx—1 s T
T r=—" 4 T (10 > 0.
/OO 2222 +a2) o2 +a3( e), a

Solution: We use the same contour as in the previous problem’s solution (4.3.2), in particular

with the curves 14, C,, and C'g. We define,
€% —1
22(22 + a?)’

f(z) =

whose single residue in the upper half-plane is at z = ia:

—a __ 1 1 _ p—Qa
2miRes(f; ia) = 2mi—s G =" 5

To evaluate along Cr, we note that for |z| = R,

1
22+ (22 + a?)

1 R—o00
<
— RQ(RQ _ a2)

0,
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and hence by a combination of Jordan’s Lemma, and the result that the integral along Cr of
a rational function P(z)/Q(z) with deg Q(z) > deg P(z) + 2 goes to 0, we have,

lim f(z)dz = 0.

R—o0 Cr

To evaluate along C¢, first note that,

£(2) e” —1 1 ) 1+
z) = = —— ...
22(z2+a?)  22+a® \z 2 ’

and hence f as a simple pole at z = 0 with Res(f;0) = i/a®. Then,

lim/ f(2)dz = —imRes(f;0) = 7/a>.

e—0 C

On the intervals I+ we have, after taking limits:
)dz — d
f(z)dz / 22(22 4 a?) :):2 + a2) v
—iz _

* e
)d dz = ——d
I fz)dz = / x2 + a2) v /0 x2(x? + a?) o

Finally, putting things together with the Cauchy Residue Theorem yields,

I

a

/002 cosx — 1 d +7r 1—e"
— dx — =TT
0 '1:2(1:2_|_a2) CL2 CLS )

and using the fact that the integrand above is even, this implies
* cosx —1 T T
———de=—5+ < (1—e°
/OO x?(x? + a?) a2 a3 ( )

4.3.7. Use the keyhole contour of Figure 4.3.6 in the text to show that on the principal branch
of x*,

(a)

00 k—1
x 7r
I(a) = dz = ol k<1
(a) /0 @t a) &= 0<k<1l, a>0

Solution: We use the same notation as in the figure: C¢ denotes a circle of radius ¢ > 0
traversed clockwise with a small opening at arg z = 0, and Cr denotes a circle of radius R > 1
with a small opening at arg z = 0 traversed counterclockwise. We let I denote the integral
along [e, R] with small positive imaginary part, and I_ the same integral but small negative
imaginary part. Define

k—1
z
z) = .
S =
We begin by computing the (single) residue inside the contour at z = —a:
2miRes(f; —a) = 2mi(ae’™)F ! = —2miak e,
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On the contour Cr with |z| = R, we have,

RRF1 1 1 Rowo

|2f(2)] < R—a T—a/R

0,
where we have used £ — 1 € (—1,0) since 0 < k& < 1. Since this limit is uniform in z, then

lim f(z)dz = 0.

R—o00 Cr
A similar computation can be carried out on C, where |z| = € and € < 1:

fk e—0t

— €

25() < - 0

which holds uniformly in z where again we have used 0 < k < 1. To understand the integrals
on I4, we define the branch of the function 2* to be so that arg z € [0, 27). The integral along
I, is given via the parameterization z = x,

R k-1
/ T dr o I(a),

r—a

and along I_ we use the parameterization z = ze*™ to yield!,

€ k—12mi(k—1) R k-1
" e 4 < T ,
/ T eMidr= —627”k/ dr — —eQMkI(a).
€

p wem —q r+a

Putting everything together with the Cauchy Residue Theorem yields,

. 1 21 T
_ . k—1 ik _ k—1 _ k—1
I(a) = —2mia" "™ ——5— = ma e = — a
1—e ek — e sin k7

4.3.13. Use the keyhole contour of Figure 4.3.6 to show for the principal branch of /2 and
log z,

/Ooml/2logx . 72
o (1+2?) 22

Solution: We use the same notation for the keyhole contour as in the solution to the previous
problem (4.3.7), in particular for the contours Cg, C., and I;. Define,
212 log 2
z2)= ——2—,
1+ 22
where for both z!/2 and log z we define our branch as that associated to arg z € [0,27). This
function has two residues inside the keyhole contour located at z = +i:

logi ez g2
27rz'Res(f; Z) = 27’[‘222ﬂ = 21 5 2 _ i%e’m/ll
1 1
—N1/2100(—q i3m/4,; 3w 302
27riRes(f; _Z) = 27rZ(2>2()g<Z) = 2772% = —i%elgﬂ—/éla
—92 —%

!Techically, the parameterization is z = 2e' "9 for infinitesimal § > 0.
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so that,

2 1
2mi (Res(f;4) + Res(f; —i)) = 36”/4(3 +i) = 72 <\/§ + Z\/§> .

On the contour Cg, we note that for |z| = R with R > 1:

12|3/2] log 2| - R3/2 (log R + 27) Rtoo

12f(2)| = T T =00,

uniformly for z € Cg, which implies,

lim f(z)dz =0.

R—o0 CR
Similarly on C¢, for |z| = € and € < 1, we have,

|2>/2|1og z| _ €¥/% (loge + 27) elo
= < =
|Zf(2)| ’Z2 1| = 1 2 07

again uniformly for z € C¢, and therefore,

6li)lrglo/cef(z)dz—O.

We can now compute the integrals on the contours IL. On [, we use the parameterization
z = x with x real to obtain,

R ,1/2

1 o 00 1/21
f(z)dz—/ 5 0BTy Lol / z 5 BT o = J.
I € v 4+1 0 e +1

On I_, we use the parameterization z = ze?™ to yield,

f(z) & /6 (x€27ri)1/2 log relmi
I - R 1+ (1'627”:)2

R .1/2 ;
_ / x/* (log x 4 2i) da
¢ 1+ 22

oo
el o [
0

eQm dx

1/2
x dzx.

1+ 22

Combining all this with the Cauchy Residue Theorem (and taking limits) yields,

00 1/2 2 o
2J—|—27m'/ —dx = — 4+ iV 277,
0 «T2+1 \/5

and taking real parts of the above equality implies,

oo .1/2 2
/ x logzw P o
o (1+22) 22
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