Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2023
 Homework 5
 Computing Integrals

Due: Friday, April 7, 2023

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 4.3.2
4.3.3
4.3.7, part (a) only. Note that $0<k<1$ is the correct restriction on k.
4.3.13, only compute the first integral, i.e., the one involving $x^{1 / 2} \log x$.

In addition, for this section the text considers the principal branch of $\log z$ and $z^{1 / 2}$ to correspond to $z=r e^{i \theta}$ for $\theta \in[0,2 \pi)$.
Submit your homework assignment on Canvas via Gradescope.
4.3.2. Show that,

$$
\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} \mathrm{d} x=\frac{\pi}{2}\left(1-\frac{1}{e}\right) .
$$

Solution: We start by defining,

$$
f(z)=\frac{e^{i z}}{z\left(z^{2}+1\right)}
$$

Then we have,

$$
J:=\int_{0}^{\infty} f(z) \mathrm{d} z, \quad I=\operatorname{Im}(J)
$$

where I is the integral we seek to compute. We will evaluate J using the Cauchy Residue Theorem, with a closed loop consisting of (i) a radius R semicircular contour C_{R} centered at 0 in the upper half-place with large R, (ii) the integral along the real interval $I_{-}=(-R,-\epsilon)$ for $\epsilon>0$ small, (iii) the semicirular contour C_{ϵ} in the upper half plane centered at 0 , (iv) the integral along the real interval $I_{+}=(\epsilon, R)$. We will take limits as $R \uparrow \infty$ and $\epsilon \downarrow 0$. We proceed to compute these integrals.
First, we have that,

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) \mathrm{d} z=-i \pi \operatorname{Res}(f ; 0)=-i \pi \frac{e^{0}}{\left(0^{2}+1\right)}=-i \pi .
$$

since C_{ϵ} sweeps out an angle of π with clockwise orientation. For $|z|=R>1$, we have,

$$
\left|\frac{1}{z\left(z^{2}+1\right)}\right| \leq \frac{1}{R\left(R^{2}-1\right)} \xrightarrow{R \rightarrow \infty} 0,
$$

and hence by Jordan's Lemma,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{d} z=\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{e^{i z}}{z\left(z^{2}+1\right)} \mathrm{d} z=0 .
$$

We next compute the two integrals on the real line:

$$
\lim _{\epsilon \rightarrow 0^{+}, R \rightarrow \infty} \int_{I_{+}} f(z) \mathrm{d} z=J,
$$

and

$$
\lim _{\epsilon \rightarrow 0^{+}, R \rightarrow \infty} \int_{I_{-}} f(z) \mathrm{d} z=\lim _{\epsilon \rightarrow 0^{+}, R \rightarrow \infty}-\int_{\epsilon}^{\infty} \frac{e^{-i x}}{x\left(x^{2}+1\right)} \mathrm{d} x=-\bar{J} .
$$

Finally, the only residue of f in the upper half plane is located at $z=i$:

$$
2 \pi i \operatorname{Res}(f ; i)=2 \pi i \frac{e^{-1}}{i(2 i)}=-\frac{i \pi}{e}
$$

Finally, the Cauchy Residue Theorem yields:

$$
\lim _{\epsilon \rightarrow 0^{+}, R \rightarrow \infty}\left[\int_{C_{R}} f(z) \mathrm{d} z+\int_{I_{-}} f(z) \mathrm{d} z+\int_{C_{\epsilon}} f(z) \mathrm{d} z+\int_{I_{+}} f(z) \mathrm{d} z\right]=2 \pi i \operatorname{Res}(f ; i),
$$

i.e.,

$$
-i \pi+J-\bar{J}=-\frac{i \pi}{e} \quad \Longrightarrow \quad I=\operatorname{Im}(J)=\frac{1}{2}\left(\pi-\frac{\pi}{e}\right)=\frac{\pi}{2}\left(1-\frac{1}{e}\right)
$$

4.3.3. Show that,

$$
\int_{-\infty}^{\infty} \frac{\cos x-1}{x^{2}\left(x^{2}+a^{2}\right)} \mathrm{d} x=-\frac{\pi}{a^{2}}+\frac{\pi}{a^{3}}\left(1-e^{-a}\right), \quad a>0 .
$$

Solution: We use the same contour as in the previous problem's solution (4.3.2), in particular with the curves $I_{ \pm}, C_{\epsilon}$, and C_{R}. We define,

$$
f(z)=\frac{e^{i z}-1}{z^{2}\left(z^{2}+a^{2}\right)},
$$

whose single residue in the upper half-plane is at $z=i a$:

$$
2 \pi i \operatorname{Res}(f ; i a)=2 \pi i \frac{e^{-a}-1}{-a^{2}(2 i a)}=\pi \frac{1-e^{-a}}{a^{3}} .
$$

To evaluate along C_{R}, we note that for $|z|=R$,

$$
\left|\frac{1}{z^{2}+\left(z^{2}+a^{2}\right)}\right| \leq \frac{1}{R^{2}\left(R^{2}-a^{2}\right)} \stackrel{R \rightarrow \infty}{\rightarrow} 0
$$

and hence by a combination of Jordan's Lemma, and the result that the integral along C_{R} of a rational function $P(z) / Q(z)$ with $\operatorname{deg} Q(z) \geq \operatorname{deg} P(z)+2$ goes to 0 , we have,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{d} z=0
$$

To evaluate along C_{ϵ}, first note that,

$$
f(z)=\frac{e^{i z}-1}{z^{2}\left(z^{2}+a^{2}\right)}=\frac{1}{z^{2}+a^{2}}\left(\frac{i}{z}-\frac{1}{2}+\ldots\right)
$$

and hence f as a simple pole at $z=0$ with $\operatorname{Res}(f ; 0)=i / a^{2}$. Then,

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) \mathrm{d} z=-i \pi \operatorname{Res}(f ; 0)=\pi / a^{2} .
$$

On the intervals $I_{ \pm}$we have, after taking limits:

$$
\begin{aligned}
& \int_{I_{+}} f(z) \mathrm{d} z \rightarrow \int_{0}^{\infty} \frac{e^{i x}-1}{x^{2}\left(x^{2}+a^{2}\right)} \mathrm{d} x \\
& \int_{I_{-}} f(z) \mathrm{d} z \rightarrow \int_{-\infty}^{0} \frac{e^{i x}-1}{x^{2}\left(x^{2}+a^{2}\right)} \mathrm{d} x=\int_{0}^{\infty} \frac{e^{-i x}-1}{x^{2}\left(x^{2}+a^{2}\right)} \mathrm{d} x
\end{aligned}
$$

Finally, putting things together with the Cauchy Residue Theorem yields,

$$
\int_{0}^{\infty} 2 \frac{\cos x-1}{x^{2}\left(x^{2}+a^{2}\right)} \mathrm{d} x+\frac{\pi}{a^{2}}=\pi \frac{1-e^{-a}}{a^{3}}
$$

and using the fact that the integrand above is even, this implies

$$
\int_{-\infty}^{\infty} \frac{\cos x-1}{x^{2}\left(x^{2}+a^{2}\right)} \mathrm{d} x=-\frac{\pi}{a^{2}}+\frac{\pi}{a^{3}}\left(1-e^{-a}\right)
$$

4.3.7. Use the keyhole contour of Figure 4.3 .6 in the text to show that on the principal branch of x^{k},
(a)

$$
I(a)=\int_{0}^{\infty} \frac{x^{k-1}}{(x+a)} \mathrm{d} x=\frac{\pi}{\sin k \pi} a^{k-1}, \quad 0<k<1, \quad a>0
$$

Solution: We use the same notation as in the figure: C_{ϵ} denotes a circle of radius $\epsilon>0$ traversed clockwise with a small opening at $\arg z=0$, and C_{R} denotes a circle of radius $R \gg 1$ with a small opening at $\arg z=0$ traversed counterclockwise. We let I_{+}denote the integral along $[\epsilon, R]$ with small positive imaginary part, and I_{-}the same integral but small negative imaginary part. Define

$$
f(z)=\frac{z^{k-1}}{z+a}
$$

We begin by computing the (single) residue inside the contour at $z=-a$:

$$
2 \pi i \operatorname{Res}(f ;-a)=2 \pi i\left(a e^{i \pi}\right)^{k-1}=-2 \pi i a^{k-1} e^{i \pi k}
$$

On the contour C_{R} with $|z|=R$, we have,

$$
|z f(z)| \leq \frac{R R^{k-1}}{R-a}=R^{k-1} \frac{1}{1-a / R} \xrightarrow{R \rightarrow \infty} 0,
$$

where we have used $k-1 \in(-1,0)$ since $0<k<1$. Since this limit is uniform in z, then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{d} z=0
$$

A similar computation can be carried out on C_{ϵ}, where $|z|=\epsilon$ and $\epsilon \ll 1$:

$$
|z f(z)| \leq \frac{\epsilon^{k}}{a-\epsilon} \xrightarrow{\epsilon \rightarrow 0^{+}} 0,
$$

which holds uniformly in z where again we have used $0<k<1$. To understand the integrals on $I_{ \pm}$, we define the branch of the function z^{k} to be so that $\arg z \in[0,2 \pi)$. The integral along I_{+}is given via the parameterization $z=x$,

$$
\int_{\epsilon}^{R} \frac{x^{k-1}}{x-a} \mathrm{~d} x \rightarrow I(a),
$$

and along I_{-}we use the parameterization $z=x e^{2 \pi i}$ to yield ${ }^{1}$,

$$
\int_{R}^{\epsilon} \frac{x^{k-1} e^{2 \pi i(k-1)}}{x e^{2 \pi i}-a} e^{2 \pi i} \mathrm{~d} x=-e^{2 \pi i k} \int_{\epsilon}^{R} \frac{x^{k-1}}{x+a} \mathrm{~d} x \rightarrow-e^{2 \pi i k} I(a) .
$$

Putting everything together with the Cauchy Residue Theorem yields,

$$
I(a)=-2 \pi i a^{k-1} e^{i \pi k} \frac{1}{1-e^{2 \pi i k}}=\pi a^{k-1} \frac{2 i}{e^{i \pi k}-e^{-i \pi k}}=\frac{\pi}{\sin k \pi} a^{k-1}
$$

4.3.13. Use the keyhole contour of Figure 4.3 .6 to show for the principal branch of $x^{1 / 2}$ and $\log x$,

$$
\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{\left(1+x^{2}\right)} \mathrm{d} x=\frac{\pi^{2}}{2 \sqrt{2}}
$$

Solution: We use the same notation for the keyhole contour as in the solution to the previous problem (4.3.7), in particular for the contours C_{R}, C_{ϵ}, and $I_{ \pm}$. Define,

$$
f(z)=\frac{z^{1 / 2} \log z}{1+z^{2}}
$$

where for both $z^{1 / 2}$ and $\log z$ we define our branch as that associated to $\arg z \in[0,2 \pi)$. This function has two residues inside the keyhole contour located at $z= \pm i$:

$$
\begin{aligned}
2 \pi i \operatorname{Res}(f ; i) & =2 \pi i \frac{i^{1 / 2} \log i}{2 i}=2 \pi i \frac{e^{i \pi / 4} i \frac{\pi}{2}}{2 i}=i \frac{\pi^{2}}{2} e^{i \pi / 4} \\
2 \pi i \operatorname{Res}(f ;-i) & =2 \pi i \frac{(-i)^{1 / 2} \log (-i)}{-2 i}=2 \pi i \frac{e^{i 3 \pi / 4} i \frac{3 \pi}{2}}{-2 i}=-i \frac{3 \pi^{2}}{2} e^{i 3 \pi / 4},
\end{aligned}
$$

[^0]so that,
$$
2 \pi i(\operatorname{Res}(f ; i)+\operatorname{Res}(f ;-i))=\frac{\pi^{2}}{2} e^{i \pi / 4}(3+i)=\pi^{2}\left(\frac{1}{\sqrt{2}}+i \sqrt{2}\right) .
$$

On the contour C_{R}, we note that for $|z|=R$ with $R>1$:

$$
|z f(z)|=\frac{|z|^{3 / 2}|\log z|}{\left|z^{2}+1\right|} \leq \frac{R^{3 / 2}(\log R+2 \pi)}{R^{2}-1} \xrightarrow{R \uparrow \infty} 0,
$$

uniformly for $z \in C_{R}$, which implies,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{d} z=0
$$

Similarly on C_{ϵ}, for $|z|=\epsilon$ and $\epsilon<1$, we have,

$$
|z f(z)|=\frac{|z|^{3 / 2}|\log z|}{\left|z^{2}+1\right|} \leq \frac{\epsilon^{3 / 2}(\log \epsilon+2 \pi)}{1-\epsilon^{2}} \xrightarrow[\rightarrow]{\epsilon \bullet 0} 0,
$$

again uniformly for $z \in C_{\epsilon}$, and therefore,

$$
\lim _{\epsilon \rightarrow \infty} \int_{C_{\epsilon}} f(z) \mathrm{d} z=0
$$

We can now compute the integrals on the contours $I_{ \pm}$. On I_{+}, we use the parameterization $z=x$ with x real to obtain,

$$
\int_{I_{+}} f(z) \mathrm{d} z=\int_{\epsilon}^{R} \frac{x^{1 / 2} \log x}{x^{2}+1} \mathrm{~d} x \xrightarrow{R \uparrow \infty, \epsilon \downarrow 0} \int_{0}^{\infty} \frac{x^{1 / 2} \log x}{x^{2}+1} \mathrm{~d} x=: J .
$$

On I_{-}, we use the parameterization $z=x e^{2 \pi i}$ to yield,

$$
\begin{aligned}
\int_{I_{-}} f(z) \mathrm{d} z & =\int_{R}^{\epsilon} \frac{\left(x e^{2 \pi i}\right)^{1 / 2} \log x e^{2 \pi i}}{1+\left(x e^{2 \pi i}\right)^{2}} e^{2 \pi i} \mathrm{~d} x \\
& =\int_{\epsilon}^{R} \frac{x^{1 / 2}(\log x+2 \pi i)}{1+x^{2}} \mathrm{~d} x \\
& \xrightarrow{R \uparrow \infty, \epsilon \downarrow 0} J+2 \pi i \int_{0}^{\infty} \frac{x^{1 / 2}}{1+x^{2}} \mathrm{~d} x .
\end{aligned}
$$

Combining all this with the Cauchy Residue Theorem (and taking limits) yields,

$$
2 J+2 \pi i \int_{0}^{\infty} \frac{x^{1 / 2}}{x^{2}+1} \mathrm{~d} x=\frac{\pi^{2}}{\sqrt{2}}+i \sqrt{2} \pi^{2}
$$

and taking real parts of the above equality implies,

$$
\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{\left(1+x^{2}\right)} \mathrm{d} x=J=\frac{\pi^{2}}{2 \sqrt{2}}
$$

[^0]: ${ }^{1}$ Techically, the parameterization is $z=x e^{i(2 \pi-\delta)}$ for infinitesimal $\delta>0$.

