
Department of Mathematics, University of Utah
Applied Complex Variables and Asymptotic Methods

MATH 6720 – Section 001 – Spring 2023
Homework 4

Residue Calculus

Due: Monday, March 27, 2023

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 4.1.1, parts (b), (d), and (e)
4.1.2, parts (b) and (c)
4.1.8
4.2.1, parts (b) and (d)
4.2.2, parts (a), (d), and (g)
4.2.5
4.2.7

Submit your homework assignment on Canvas via Gradescope.

4.1.1. Evaluate the integrals 1
2πi

∮
C f(z) dz, where C is the unit circle centered at the origin

and f(z) is given below.

(b) cosh(1/z)
z

(d) log(z+2)
2z+1 , principal branch

(e) z+1/z
z(2z−1/2z)

Solution: We will evaluate these integrals using the Cauchy Residue Theorem.
(b) The only singularity inside C is at z = 0, which is an essential singularity due to the

Laurent expansion of cosh(1/z). Therefore, we compute the residue using the Laurent
expansion of f around 0:

f(z) =
1

z

( ∞∑
n=0

1

z2n(2n)!

)
=

1

z
+

∞∑
n=1

1

z2n+1(2n)!
,

and therefore Res(f ; 0) = 1, so the Residue Theorem implies that

1

2πi

∮
C
f(z) dz = Res(f ; 0) = 1.

(d) For the principal branch of w 7→ logw, we take w = reiθ with θ ∈ [−π, π). The singularity
of the numerator log(z + 2) lies at z = −2, which is outside C, and the denominator
has a simple zero at z = −1/2, which lies inside C. Therefore, we need only compute
Res(f ;−1/2). This can be directly computed as,

Res(f ;−1/2) = log(−1/2 + 2)

(2z + 1)′|z=−1/2
=

1

2
log

3

2
.
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By the Residue Theorem,

1

2πi

∮
C
f(z) dz = Res(f ;−1/2) = 1

2
log

3

2
.

(e) We rewrite this function as,

f(z) =
2z2 + 2

z(4z2 − 1)
.

Since the denominator is a polynomial with simple zeros, then f has simple poles at
z = 0 and z = ±1/2, all of which lie inside C. We compute the corresponding residues
as follows:

Res(f ; 0) =
(2z2 + 2)

∣∣
z=0

(z(4z2 − 1))′
∣∣
z=0

=
2

−1
= −2,

Res(f ; +1/2) =
(2z2 + 2)

∣∣
z=1/2

(z(4z2 − 1))′
∣∣
z=1/2

=
5/2

z(8z)
∣∣
z=1/2

=
5

4
,

Res(f ;−1/2) =
(2z2 + 2)

∣∣
z=−1/2

(z(4z2 − 1))′
∣∣
z=−1/2

=
5/2

z(8z)
∣∣
z=−1/2

=
5

4
.

Then by the Residue Theorem,

1

2πi

∮
C
f(z) dz = Res(f ; 0) + Res(f ; 1/2) + Res(f ;−1/2) = 1

2
.

4.1.2. Evaluate the integrals 1
2πi

∮
C f(z) dz, where C is the unit circle centered at the origin

with f(z) given below. Do these problems by both (i) enclosing the singular points inside C
and (ii) enclosing the singular points outside C (by including the point at infinity). Show that
you obtain the same result in both cases.
(b) z2+1

z3

(c) z2e−1/z

Solution: We will evaluate these integrals using the Cauchy Residue Theorem using two
different ways. First we note that as a consequence of the definition,

Res(f ;∞) := lim
R→∞

1

2πi

∮
∂BR(0)

f(z) dz,

then
∑M

j=1Res(f ; zj) = Res(f ;∞), where {zj}Mj=1 are the singularities of f in the finite plane
C.
(b) The only singularity inside C is at z = 0, and there are no singularities in the finite plane

outside C. Therefore,

1

2πi

∮
C
f(z) dz = Res(f ; 0) = Res(f ;∞).

The Laurent expansion of f at 0 is given by the function itself, f(z) = 1
z + 1

z3
, so

Res(f ; 0) = 1. To compute the Residue at infinity, we use the formula,

Res(f(z);∞) = Res

(
1

w2
f

(
1

w

)
; 0

)
= Res

(
1

w
+ w; 0

)
= 1.
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Hence we have,

1

2πi

∮
C
f(z) dz = Res(f ;∞) = 1,

1

2πi

∮
C
f(z) dz = Res(f ; 0) = 1,

as expected.
(c) Again, the only singularity inside C is at z = 0, and there are no singularities in the

finite plane outside C. So again we have,

1

2πi

∮
C
f(z) dz = Res(f ; 0) = Res(f ;∞).

The point z = 0 is an essential singularity for f , so we compute the Laurent expansion:

f(z) = z2
∞∑
n=0

(−1)n

znn!
= z2 − z +

1

2
− 1

6z
+ . . . ,

so Res(f ; 0) = −1/6. The residue at infinity is given by,

Res(f(z); 0) = Res

(
1

w2
f

(
1

w

)
; 0

)
= Res

(
e−w

w4
; 0

)
= −1

6
.

Therefore, we have,

1

2πi

∮
C
f(z) dz = Res(f ;∞) = −1

6
,

1

2πi

∮
C
f(z) dz = Res(f ; 0) = −1

6
.

4.1.8. Suppose f(z) is a meromorphic function (i.e., f(z) is analytic everywhere in the finite
z plane except at isolated points where it has poles) with N simple zeros (i.e., f(z0) = 0,
f ′(z0) ̸= 0) and M simple poles inside a circle C. Show

1

2πi

∮
C

f ′(z)

f(z)
dz = N −M.

Solution: Note that f ′(z)
f(z) has singularities only where either f(z) and/or f ′(z) have singular-

ities, or where f(z) has zeros. Since f ′(z) is analytic inside C everywhere that f is analytic,

then the only singularities of f ′(z)
f(z) occur where f has singularities or zeros. Let {zj}Nj=1 be

the zeros (simple) of f , and let {wk}Mk=1 be the singularities (simple poles) of f . Then by the
Residue Theorem,

1

2πi

∮
C

f ′(z)

f(z)
dz =

N∑
j=1

Res

(
f ′(z)

f(z)
; zj

)
+

M∑
k=1

Res

(
f ′(z)

f(z)
;wk

)
. (1a)

For a fixed j, since zj is a simple zero, then in a neighborhood of zj we have,

f(z) = (z − zj)g(z), g(z) ̸= 0, g(z) is analytic.
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In this neighborhood, we compute,

f ′(z) = g(z) + (z − zj)g
′(z) =⇒ f ′(z)

f(z)
=

1

z − zj
+

g′(z)

g(z)
,

with g′(z)/g(z) analytic in this neighborhood since g has no poles or singularities in this
neighborhood. Therefore,

Res

(
f ′(z)

f(z)
; zj

)
= 1. (1b)

Now consider for a fixed k a similar computation in a neighborhood of wk, which is a simple
pole:

f(z) =
h(z)

z − wk
, h(z) ̸= 0, h(z) is analytic.

Then in this neighborhood, we have

f ′(z) = − h(z)

(z − wk)2
+

h′(z)

z − wk
=⇒ f ′(z)

f(z)
= − 1

z − wk
+

h′(z)

h(z)
,

and h′(z)/h(z) is analytic in this neighborhod since h has no zeros or singularities in this
neighborhood. Therefore,

Res

(
f ′(z)

f(z)
;wk

)
= −1. (1c)

Combining the three equalities (1a), (1b), and (1c) proves the desired result.

4.2.1. Evaluate the following real integrals.
(b)

∫∞
0

dx
(x2+a2)2

, a2 > 0

(d)
∫∞
0

dx
x6+1

Solution: The main technique will be using the Cauchy Residue Theorem on a closed contour
that is the union of the real interval [−R,R] with a circular contour CR, with CR defined as the
portion of ∂BR(0) in the upper half-plane. I.e., for a suitably defined f(z) with singularities
{zj}Mj=1 in the upper half-plane, we will compute via the Cauchy Residue Theorem,

lim
R↑∞

[∫ R

−R
f(z) dz +

∫
CR

f(z) dz

]
= 2πi

M∑
j=1

Res(f ; zj).

In this case, we will have,

lim
R↑∞

∫
CR

f(z) dz = 0 =⇒ PV

∫ ∞

−∞
f(x) dx = 2πi

M∑
j=1

Res(f ; zj), (2)

and the equality above will be our main strategy for computing these integrals.

Akil Narayan: akil (at) sci.utah.edu 4



Homework 4
6720 Applied Complex Variables and Asymptotic Methods University of Utah

(b) We assume without loss that a > 0 (since a← −a leaves the integral unchanged). Since
the integrand is even, then∫ ∞

0

dx

(x2 + a2)2
=

1

2
PV

∫ ∞

−∞
f(x) dx, where f(x) :=

1

x2 + a2

(The principal value is not needed here, but we’ll continue to use it.) With CR the
circular contour described above, we have

lim
R↑∞

∫
CR

f(z) dx = 0,

since f is a rational function of z with f(z) = P (z)/Q(z) and degQ ≥ degP + 2. There
is a lone singularity of f in the upper half-plane at z = ia, which is a pole of order 2
with residue,

2πiRes(f ; ia) = 2πi
1

1!

d

dz

(
(z − ia)2f(z)

) ∣∣
z=ia

= 2πi
−2

(ia+ ia)3
=

π

2a3
.

Using these in (2) yields,

PV

∫ ∞

−∞
f(z) dz =

π

2a3
,

and therefore, ∫ ∞

0

1

(x2 + a2)2
dx =

π

4a3
, a > 0,

and thus for arbitrary real a ̸= 0, we have∫ ∞

0

1

(x2 + a2)2
dx =

π

4|a|3
.

(d) Since the integrand is even, then∫ ∞

0

dx

x6 + 1
=

1

2
PV

∫ ∞

−∞
f(x) dx, where f(x) :=

1

x6 + 1

(Again, the principal value is not really needed here.) With CR the circular contour
described above, we have

lim
R↑∞

∫
CR

f(z) dx = 0,

since f is a rational function of z with f(z) = P (z)/Q(z) and degQ ≥ degP + 2. The
function f has 6 simple poles in C, and three of them are in the upper half-plane. These
are located at:

z1 = eiπ/6, z2 = eiπ/2, z3 = ei5π/6.
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The residues at these points are given by,

2πi Res(f ; z1) =
2πi

6z51
=

π

3
e−πi/3,

2πi Res(f ; z2) =
2πi

6z52
=

π

3
,

2πi Res(f ; z3) =
2πi

6z53
=

π

3
eπi/3

Therefore, by (2):

PV

∫ ∞

−∞
f(x) dx = 2πi

3∑
j=1

Res(f ; zj) =
π

3

(
1 + 2 cos

π

3

)
=

2π

3
,

and therefore, ∫ ∞

0

1

x6 + 1
dx =

π

3

4.2.2. Evaluate the following real integrals by residue integration:
(a)

∫∞
−∞

x sinx
x2+a2

dx, a2 > 0

(d)
∫∞
0

cos kx
x4+1

dx, k real

(g)
∫ π/2
0 sin4 θ dθ

Solution:
(a) Define I as the integral we seek to compute. Then

I = Im (J) , J :=

∫ ∞

−∞

xeix

x2 + a2
dx,

and we will compute J to determine I. Define f(z) as the rational part of the integrand
for J :

f(z) :=
z

z2 + a2
.

Let CR be the circular contour that is the portion of ∂BR(0) in the upper half-plane.
Then [−R,R] unioned with CR is a closed contour. By the Cauchy Residue Theorem,

lim
R↑∞

∫
CR

f(z)eiz dz + PV

∫ ∞

−∞
eizf(z) dz = 2πi

M∑
j=1

Res(f(z)eiz; zj), (3)

where {zj}Mj=1 the singularities of f in the upper half-plane. The function f has one such
lone singularity (M = 1) at z = i|a|, with residue,

2πiRes(f(z)eiz; i|a|) = 2πi
i|a|e−|a|

2i|a|
= e−|a|πi.

Note that

lim
R↑∞

max
z∈CR

|f(z)| ≤ lim
R↑∞

1

R
= 0,
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and so f uniformly decays to 0 on CR as R ↑ ∞. Thus, by Jordan’s Lemma,

lim
R↑∞

∫
CR

f(z)eiz dz = 0.

Putting all this together in (3), we have,

J = PV

∫ ∞

−∞
eizf(z) dz = iπe−|a|,

and therefore,

I = Im (J) = πe−|a|.

(d) We use a similar technique as in part (a). With I the integral we seek to compute, then

I =
1

2
Re (J) , J :=

∫ ∞

−∞
ei|k|xx4 + 1dx,

where we have used the fact that the integrand for I is an even function and is invariant
under k ← |k|. Then with CR as in part (a), the Cauchy Residue Theorem implies,

lim
R↑∞

∫
CR

f(z)ei|k|z dz + J = 2πi
M∑
j=1

Res(f(z)ei|k|z; zj), (4)

where

f(z) :=
1

z4 + 1
,

and {zj}Mj=1 are the singularities of f in the upper half-plane. We again have that f
decays uniformly to 0 as R ↑ ∞:

lim
R↑∞

max
z∈CR

|f(z)| ≤ lim
R↑∞

1

R4 − 1
= 0,

and so by Jordan’s Lemma,

lim
R↑∞

∫
CR

f(z)ei|k|z dz = 0, |k| > 0.

The same result is true if k = 0 since f is a rational function f = P/Q with degQ ≥
degP + 2, i.e., we have

lim
R↑∞

∫
CR

f(z)ei|k|z dz = 0, |k| ≥ 0.

There are M = 2 singularities of f(z)ei|k|z in the upper half-plane located at z1 = eiπ/4

and z2 = e3iπ/4, with residues given by,

2πi Res(f(z)ei|k|z; z1) = 2πi
ei|k|z1

4z31
= − iπz1

2
ei|k|z1 ,

2πi Res(f(z)ei|k|z; z2) = 2πi
ei|k|z2

4z32
= − iπz3

2
ei|k|z3 .
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so that (4) becomes,

J = −π

2

(
iz1e

i|k|z1 + iz3e
i|k|z3

)
= −πe−|k|/

√
2

2

(
iz1e

i|k|/
√
2 + iz3e

−i|k|/
√
2
)

= −πe−|k|/
√
2

2

(
ei(3π/4+|k|/

√
2) + ei(5π/4−|k|/

√
2)
)
.

Therefore,

I =
1

2
Re (J) = −πe−|k|/

√
2

4

(
cos

(
3π

4
+
|k|√
2

)
+ cos

(
5π

4
− |k|√

2

))
=

πe−|k|/
√
2

2
√
2

(
cos
|k|√
2
+ sin

|k|√
2

)
(g) Since sin4 θ has period π/2, then

I =

∫ π/2

0
sin4 θ dθ =

1

4

∫ 2π

0
sin4 θ dθ.

We now use the parameterization z = eiθ, so that sin θ = 1
2i (z − 1/z), yielding,∫ 2π

0
sin4 θ dθ =

∫
∂B1(0)

(z2 − 1)4

16z5
dz

i
.

We compute this latter integral via the Cauchy Residue Theorem:∫
∂B1(0)

(z2 − 1)4

16z5
dz

i
=

2πi

16i
Res

(
(z2 − 1)4

z5
; 0

)
=

π

8

1

4!

(
d4

dz4
(z2 − 1)4

) ∣∣
z=0

=
π

8(4!)

d4

dz4
(
z8 − 4z6 + 6z4 − 4z2 + 1

) ∣∣
z=0

=
3π

4
.

Thus,

I =
1

4

3π

4
=

3π

16

4.2.5. Consider a rectangular contour with corners at b± iR and b+1± iR. Use this contour
to show that,

lim
R→∞

1

2πi

∫ b+iR

b−iR

eaz

sinπz
dz =

1

π(1 + e−a)
,

where 0 < b < 1 and |Im (a) | < π.

Akil Narayan: akil (at) sci.utah.edu 8



Homework 4
6720 Applied Complex Variables and Asymptotic Methods University of Utah

Solution: For finite R, let the left, right, bottom, and top sides of the rectange be denote Cℓ,
Cr, Cb, and Ct, respectively. The integrand has singularities at z = n, n ∈ Z, which are all
simple poles, but z = 1 is the only singularity lying inside this contour. Therefore,

Res

(
eaz

sinπz
; 1

)
=

ea

π cosπ
= −ea

π
.

Letting,

f(z) =
eaz

sinπz
,

then ∣∣∣∣∫
Cb

f(z) dz

∣∣∣∣ =
∣∣∣∣∣
∫ b+1

b

ea(x−iR)

sinπ(x− iR)
dx

∣∣∣∣∣
≤
∫ b+1

b

∣∣∣∣∣2iexRe(a)+RIm(a)ei(xIm(a)−RRe(a))

eiπx+πR − e−πR−iπx

∣∣∣∣∣ dx
= 2eRIm(a)

∫ b+1

b

exRe(a)

|eiπx+πR − e−πR−iπx|
dx

≤ 2eRIm(a)

eπR
1

1− e−2πR

∫ b+1

b
exRe(a) dx

≤ 2eR(Im(a)−π)max{ebRe(a), e(b+1)Re(a)}

1− e−2πR
.

Therefore, taking the limit in R and noting that Im (a)− π < 0, then,

lim
R↑∞

∫
Cb

f(z) dz = 0.

A similar computation can be carried out for Ct by simply performing the same computation
as on Cb but by making the replacement R← −R:∣∣∣∣∫

Ct

f(z) dz

∣∣∣∣ ≤ 2e−RIm(a)

∫ b+1

b

exRe(a)

|eiπx−πR − eπR−iπx|
dx

≤ 2
e−RIm(a)

eπR
1

1− e−2πR

∫ b+1

b
exRe(a) dx

≤ 2eR(−Im(a)−π)max{ebRe(a), e(b+1)Re(a)}
1− e−2πR

We also have −Im (a)− π < 0, so taking limits in R yields:

lim
R↑∞

∫
Ct

f(z) dz = 0.
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On the left contour, Cℓ, we have,∫
Cℓ

f(z) =

∫ b−iR

b+iR
f(z) dz

=

∫ −R

R
f(b+ iy)i dy

= −
∫ R

−R
f(b+ iy)idy

= −
∫ b+iR

b−iR
f(z) dz =: −2πi I(R),

i.e., we have defined

I(R) :=
1

2πi

∫ b+iR

b−iR

eaz

sinπz
dz.

On the right contour Cr we have,∫
Cr

f(z) =

∫ b+1+iR

b+1−iR

eaz

sinπz
dz

w=z−1
= ea

∫ b+iR

b−iR

eaw

sin(πw − π)
dw

= −ea
∫ b+iR

b−iR

eaw

sinπw
dw = −ea(2πi)I(R).

Then the Cauchy Residue Theorem states,∫
Cb

f(z) dz +

∫
Ct

f(z) dz +

∫
Cℓ

f(z) dz +

∫
Cr

f(z) dz = 2πiRes(f ; 1),

and using all our computations above yields,∫
Cb

f(z) dz +

∫
Ct

f(z) dz + 2πi (−1− ea) I(R) = −2πie
a

π

Taking limits in R:

lim
R↑∞

I(R) =
ea

π(1 + ea)
=

1

π(1 + e−a)
,

which is what we wished to show.

4.2.7. Use a sector contour with radius R, as in Figure 4.2.6 in the text, centered at the origin
with angle 0 ≤ θ ≤ 2π

5 to find, for a > 0,∫ ∞

0

dx

x5 + a5
=

π

5a4 sin π
5

.

Solution: We use the Cauchy Residue Theorem, and so proceed to define and integrate along
a closed contour. The contour we consider contains two rays of length R, one extending from
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the origin at angle 0, and the second extending from the origin at angle 2π
5 . We denote these

two contours by C0 (angle 0) and C+ (angle 2π/5), respectively. We will call the circular arc
of radius R connecting these as CR. Defining,

f(z) =
1

z5 + a5
,

which satisfies,

lim
R→∞

max
z∈CR

|zf(z)| = lim
R→∞

max
z∈CR

R

|z5 + a5|
≤ lim

R→∞
max
z∈CR

R

R5 − a5
= 0,

then we have,

lim
R→∞

∫
CR

f(z) dz = 0.

Along the contour C0, through the parameterization z = x as x ranges from 0 to R, we have,

lim
R→∞

∫
C0

f(z) dz =

∫ ∞

0

dx

x5 + a5
=: I.

Along the contour C+, through the parameterization z = re2πi/5, as r ranges from R to 0, we
have,

lim
R→∞

∫
C+

f(z) dz =

∫ 0

∞

e2πi/5 dr

r5 + a5
= −e2πi/5I

Finally, the singularities of f are all simple poles at the points,

z = zj := a1/5eiπ/5ei2πj/5, j = 0, 1, 2, 3, 4,

and only one of these poles, z0, lies inside the contour. Its corresponding residue is,

2πi Res(f ; z0) =
2πi

5z40
=

2πi

5a4
e−4πi/5

Finally, the Cauchy Residue Theorem integrating over C0, CR, and C+, after taking the limit
R→∞, reads,

I + 0− e2πi/5I =
π

5a4
2ie−4πi/5

Rearranging, this yields,

I =
π

5a4
2ie−4πi/5

eiπ/5
(
e−iπ/5 − eiπ/5

)
=

π

5a4
−2i

e−iπ/5 − eiπ/5

=
π

5a4
1

sin π
5

,

which is what we wanted to show.
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