
Department of Mathematics, University of Utah
Applied Complex Variables and Asymptotic Methods

MATH 6720 – Section 001 – Spring 2023
Homework 3
Taylor Series

Due: Tuesday, February 28, 2023

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 2.6.2
2.6.5
2.6.7
3.2.3
3.3.3
3.3.4
3.5.1, parts a) - f), and i) and j)
3.5.2, parts a) - c)

Submit your homework assignment on Canvas via Gradescope.

2.6.2. Evaluate the integrals
∮
C f(z) dz over a contour C, where C is the boundary of a square

with diagonal opposite corners at z = −(1 + i)R and z = (1 + i)R, where R > a > 0, and
where f(z) is given by the following (use Eq. (1.2.19) in the text as necessary):
(a) ez

z−πi
4
a

(b) ez

(z−πi
4
a)

2

(c) z2

2z+a

(d) sin z
z2

(e) cosh z
z

Solution: Our main tool in this exercise is the Cauchy integral formula (CIF).
(a) Let f(z) = ez, which is entire. The point πi

4 a lies inside the square C, so the CIF states,∮
C

ez

z − πi
4 a

dz =

∮
C

f(z)

z − πi
4 a

dz = 2πif

(
πi

4
a

)
= 2πieaiπ/4.

(b) With the same f(z) = ez as above, the CIF for derivatives of f implies,∮
C

ez(
z − πi

4 a
)2 dz =

∮
C

f(z)(
z − πi

4 a
)2 dz = 2πif ′

(
πi

4
a

)
= 2πieaiπ/4.

(c) We define f(z) = z2

2 , which is entire, so that,∮
C

z2

2z + a
dz =

∮
C

f(z)

z + a/2
dz

CIF
= 2πif(−a/2) = a2πi

4
,

where we have also used the fact that −a/2 lies inside C.
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(d) Defining f(z) = sin z, which is entire, then∮
C

sin z

z2
dz =

∮
C

f(z)

z2
dz

CIF
= 2πif ′(0) = 2πi

(e) Defining f(z) = cosh z, which is entire, we have,∮
C

cosh z

z
dz =

∮
C

f(z)

z
dz

CIF
= 2πif(0) = 2πi

2.6.5. Consider two entire functions with no zeros and having a ratio equal to unity at infinity.
Use Liouville’s Theorem to show that they are in fact the same function.

Solution: Let f1 and f2 be the functions in question, and define,

g(z) =
f1(z)

f2(z)
,

which itself is entire since f2 has no zeros. Since limz→∞ g(z) = 1, then there is some R ≥ 0
such that

|z| > R =⇒ |g(z)− 1| < 1

2
,

which in particular means that,

|z| > R =⇒ |g(z)| < 3

2
. (1a)

Now on BR(0) (the closed origin-centered ball of radius R), g is analytic, and in particular
continuous over this closed and bounded set, so that

M := max
z∈BR(0)

|g(z)| <∞, (1b)

i.e., g is bounded on BR(0). Combining (1a) and (1b) implies,

max
z∈C
|g(z)| ≤ max

{
3

2
,M

}
<∞,

i.e., g is bounded on C and is analytic on C. By Liouville’s theorem, g(z) is constant, and in
particular limz→∞ g(z) = 1 implies that g(z) = 1 over C, i.e., f1(z) = f2(z) over C.

2.6.7. Let f(z) be an entire function, with |f(z)| ≤ C|z| for all z, where C is a constant. Show
that f(z) = Az, where A is a constant.

Solution: Our main goal will be to show that f ′′ ≡ 0. Fix an arbitrary z ∈ C, and let C be
a z-centered circle of radius R > |z|. The Cauchy Integral formula for the second derivative of
f reads,

f ′′(z) =
2!

2πi

∮
C

f(w)

(w − z)3
dw.
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Using |f(w)| ≤ C|w| and parameterizing the integral over the circle with w(θ) = z +Reiθ, we
have, ∣∣f ′′(z)

∣∣ ≤ 1

πi

∮
C

|f(w)|
|w − z|3

| dw|

≤ C

πi

∮
C

|w|
|w − z|3

| dw|

=
C

πi

∫ 2π

0

|z +Reiθ|
R3

R dθ

|z|<R

≤ C

πR2

∫ 2π

0
2R dθ =

4C

R

This bound is true for every R > |z|, i.e., |f ′′(z)| < ϵ for every ϵ > 0, implying that |f ′′(z)| =
f ′′(z) = 0. Since z was arbitrary, we have f ′′(z) = 0 for all z ∈ C. Therefore, f(z) = Az + B
for some constants A and B.
The constant B must be zero since |f(z)| ≤ C|z| implies that |f(0)| ≤ 0, i.e., |B| ≤ 0, so
B = 0. Hence, f(z) = Az.

3.2.3. Let the Euler number En be defined by the power series,

1

cosh z
=

∞∑
n=0

En

n!
zn.

(a) Find the radius of convergence of this series.
(b) Determine the first six Euler numbers.

Solution:
(a) Since 1 and cosh z are both entire functions, then 1/ cosh z fails to be analytic only where

cosh z = 0. The roots of this function correspond to the roots of the equation,

ez + e−z = 0
ez ̸=0−−−→ e2z + 1 = 0.

i.e., e2z = −1. Writing this in terms of logarithms, we have,

z =
1

2
log−1 =

1

2
(−iπ + i2πk) = − iπ

2
+ ikπ,

for every k ∈ Z. In particular, the two roots that are closest to the origin are,

z = ± iπ

2
.

In other words, 1/ cosh z is analytic on |z| < R0 for every R0 < π/2. Hence, the radius
of convergence for this power/Taylor series is R = π/2.

(b) Within the region of convergence of the series, we rewrite it as,

1 = cosh z
∞∑
n=0

En

n!
zn

=

( ∞∑
k=0

ckz
k

)( ∞∑
n=0

En

n!
zn

)

=

∞∑
n=0

dnz
n,
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where

ck =

{
1
k! , k even
0, k odd

dn =

n∑
k=0

Ek

k!
cn−k.

Note that since this must be the power series for the function 1, then

dn =

{
1, n = 0
0, n ≥ 1.

Hence, we can determine the first 6 Euler numbers by equating the two previous expres-
sions for dn:

1 = d0 =
E0

0!
c0 = E0,

0 = d1 =
E0

0!
c1 +

E1

1!
c0 = E1

0 = d2 =
E0

0!
c2 +

E1

1!
c1 +

E2

2!
c0 =

E0

2
+

E2

2

0 = d3 =
E0

0!
c3 +

E1

1!
c2 +

E2

2!
c1 +

E3

3!
c0 =

E1

2
+

E3

6

0 = d4 =
E0

0!
c4 +

E1

1!
c3 +

E2

2!
c2 +

E3

3!
c1 +

E4

4!
c0 =

E0

24
+

E2

4
+

E4

24

0 = d5 =
E0

0!
c5 +

E1

1!
c4 +

E2

2!
c3 +

E3

3!
c2 +

E4

4!
c1 +

E5

5!
c0 =

E1

24
+

E3

12
+

E5

120

This is a lower triangular linear system for the unknowns (E0, E1, E2, E3, E4, E5), whose
solution is: 

E0

E1

E2

E3

E4

E5

 =



1
0
−1
0
5
0



3.3.3. Given the function

f(z) =
z

(z − 2)(z + i)
,

expand f(z) in a Laurent series in powers of z in the regions,
(a) |z| < 1
(b) 1 < |z| < 2
(c) |z| > 2

Solution: Before delving into the individual parts of this problem, we perform some prelimi-
nary computations. First, expanding f in partial fractions yields the representation,

f(z) =
2

2+i

z − 2
+

i
2+i

z + i
, (2)
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so that we can accomplish this problem by considering Laurent series’ for 1/(z−2) and 1/(z+i).
For the first expansion, we note:

|z| < 2 :
1

z − 2
=

(
−1

2

)
1

1− (z/2)

|z/2|<1
= −1

2

∞∑
j=0

(z
2

)j
=

∞∑
j=0

− 1

2j+1
zj ,

|z| > 2 :
1

z − 2
=

(
1

z

)
1

1− (2/z)

|2/z|<1
=

1

z

∞∑
j=0

(
2

z

)j

=
−1∑

j=−∞

1

2j+1
zj ,

and this implies that,

1

z − 2
=



∞∑
j=0

ajz
j , |z| < 2,

−1∑
j=−∞

ajz
j , |z| > 2,

aj =

{
− 1

2j+1 , j ≥ 0
1

2j+1 , j < 0.
(3)

Similarly, for 1/(z + i) we have,

|z| < 1 :
1

z + i
=

(
1

i

)
1

1− iz

|iz|<1
=

1

i

∞∑
j=0

(iz)j =

∞∑
j=0

ij−1zj ,

|z| > 1 :
1

z + i
=

(
1

z

)
1

1− (1/iz)

|iz|>1
=

1

z

∞∑
j=0

1

(iz)j
=

−1∑
j=−∞

ij+1zj ,

and so,

1

z + i
=



∞∑
j=0

bjz
j , |z| < 1,

−1∑
j=−∞

bjz
j , |z| > 1,

bj =

{
ij−1, j ≥ 0
ij+1, j < 0.

(4)

We can now answer the individual parts of this question:
(a) For |z| < 1, we use the Taylor series both from (3) and (4) in (2) to obtain,

f(z) =
∞∑
j=0

cjz
j , cj =

2aj
2 + i

+
ibj
2 + i

=
1

2 + i

(
− 1

2j
+ ij

)
, j ≥ 0.

(b) For 1 < |z| < 2, we use the Laurent series from (3) and the Taylor series from (4),
obtaining,

f(z) =
∞∑

j=−∞
cjz

j , cj =

{
2aj
2+i = −

1
(2+i)2j

, j ≥ 0,
ibj
2+i =

ij+2

2+i , j < 0

(c) For |z| > 2, we exercise the Laurent series from both (3) and (4) to obtain,

f(z) =

−1∑
j=−∞

cjz
j , cj =

2aj
2 + i

+
ibj
2 + i

=
1

2 + i

(
1

2j
− ij

)
, j < 0
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3.3.4. Evaluate the integral
∮
C f(z) dz where C is the unit circle centered at the origin and

f(z) is given as follows,
(a) ez

z3

(b) 1
z2 sin z

(c) tanh z
(d) 1

cos 2z

(e) e1/z

Solution: Assuming f is analytic in some open domain of |z| = 1, our strategy in this problem
is to utilize the Laurent series formula,

g(z) =
∑
n∈Z

cnz
n, cn =

1

2πi

∮
C

g(z)

zn+1
dz,

so that, by appropriately defining g, integrals around C can be computed by identifying certain
coefficients of the Laurent series of g. (Note that this is equivalent to expanding f in a Laurent
series and computing the c−1 coefficient for f .)
(a) With g(z) = ez, then ∮

C
f(z) dz =

∮
C

g(z)

z3
dz = 2πic2.

The function g has the convergent Taylor series g(z) = 1+z+z2/2+· · · , so we immediately
conclude that c2 = 1/2, and thus,

∮
C f(z) dz = πi.

(b) We take g(z) = z/(sin z), so that,∮
C
f(z) dz =

∮
C

g(z)

z3
dz = 2πic2.

The Laurent series expansion around z = 0 for g, which is analytic around |z| = 1, can
be computed via,

z

sin z
=

z

z − z3

3! +
z5

5! − · · ·
=

1

1− z2

3! +
z4

5! − · · ·
=

1

1−
(
z2

3! −
z4

5! + · · ·
)

= 1 +

(
z2

3!
− z4

5!
+ · · ·

)
+ · · · ,

where the last equality uses the geometric series on the terms in parenthesis. From this
expression, we see that c2 = 1/3! = 1/6, so that

∮
C f(z) dz = πi/3.

(c) The function tanh z is analytic everywhere except where the denominator (cosh z) van-
ishes. The denominator vanishes at z = (2j + 1)iπ/2, for j ∈ Z. Note that C does
not enclose any of these points, and so f is analytic inside C. By the Cauchy-Goursat
theorem,

∮
C f(z) dz = 0.

(d) For this problem, we cannot directly compute a Laurent series since cos 2z = 0 for
z = ±π

4 , which both lie within C. Instead, we deform C into two circles of small radius
(say radius smaller than π

4 ) with a crosscut connecting them, with the first circle C−
counterclockwise around z = −π/4, and second circle C+ counterclockwise around π/4.
The two crosscut integrals add-out, and so we must compute,∫

C

1

cos 2z
dz =

∫
C−

1

cos 2z
dz +

∫
C+

1

cos 2z
dz.
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For the C− integral, g−(z) :=
1

cos 2z is analytic in a neighborhood of z = −π/4, and we
have,

g−(z) =
1

cos 2z
=

1

sin (2(z + π/4))
=

1

2(z + π/4)

∑
j≥0

[
(2(z + π/4))2

3!
− (2(z + π/4))4

5!
− . . .

]j
where the last equality is the Laurent series of 1/ sinw around w = 0 with w ← 2(z+π/4).
(The computation uses the Taylor expansion of sinw along with a geometric series.)
Hence, the Laurent series coefficient c−1 for g− around z = −π/4 is given by c−1 =

1
2 , so

that, ∫
C−

1

cos 2z
dz =

1

2
.

A similar computation with,

g+(z) :=
1

cos 2z
= − 1

sin (2(z − π/4))
=

−1
2(z − π/4)

∑
j≥0

[
(2(z − π/4))2

3!
− (2(z − π/4))4

5!
− . . .

]j
,

implies that ∫
C+

1

cos 2z
dz = −1

2
.

Hence, ∫
C

1

cos 2z
dz =

∫
C−

1

cos 2z
dz +

∫
C+

1

cos 2z
dz =

1

2
− 1

2
= 0

(e) Again defining g = f , we have ∮
C
f(z) dz = 2πic−1.

The Laurent series for f = e1/z is given by,

e1/z
z=1/w
= ew =

∑
j≥0

wj

j!

z=1/w
=

∑
j≤0

zj

(−j)!
= 1 +

1

z
+

1

2z2
+ · · · ,

so that c−1 = 1, and hence
∮
C f(z) dz = 2πi.

3.5.1. Discuss the type of singularity (removable, pole and order, essential, branch, cluster,
natural barrier, etc.); if the type is a pole give the strength of the pole, and give the nature
(isolated or not) of all singular points associated with the following functions. Include the
point at infinity.

(a) ez
2−1
z2

(b) e2z−1
z2

(c) etan z

(d) z3

z2+z+1
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(e) z1/3−1
z−1

(f) log(1 + z1/2)

(i) sech z

(j) coth 1/z

Solution:
(a) The point z = 0 is a removable (hence isolated) singularity, and z = ∞ is an essential

(hence isolated) singularity. The finite-z singularities only occur when the denominator
vanishes, i.e., z = 0, where f (and also f ′) are undefined. Through a Taylor expansion
of the numerator, we find,

ez
2 − 1

z2
=

1

z2

−1 + ∞∑
j=0

z2j

j!

 =
∞∑
j=0

z2j

(j + 1)!
,

hence this function has a convergent power series around z = 0, and thus z = 0 is a
removable singularity. Redefining the function to have value 1 at z = 0 makes it analytic.
To investigate z =∞, consider the expansion above in the variable w = 1/z. Then as a
function of w this function has an infinite principal part of its Laurent expansion around
w = 0, so that w = 0 (hence z =∞) is an essential singularity.

(b) The point z = 0 is a simple pole (hence isolated) with strength 2, and z = ∞ is an
essential (isolated) singularity. Again, we take a Taylor series expansion and simplify:

e2z − 1

z2
=

1

z2

−1 + ∞∑
j=0

(2z)j

j!

 =
2

z
+ 2 + . . . ,

where . . . is a power series around z = 0. Thus, z = 0 is a simple pole of strength
2. Making the definition w = 1/z, we see that the again the the principal part of the
expansion above in terms of w has an infinite number of terms, so that w = 0 (hence
z =∞) is an essential singularity.

(c) The point z = ∞ is a cluster (non-isolated) singular point, and z = (2n+1)π
2 for n ∈ Z

are essential (isolated) singularities. Making the substituion w = 1/z, then exp(tan 1/w)
has singularities for w = 2

(2n+1) , n ∈ Z, which cluster around 0, so w = 0 (z = ∞)
is a cluster singularity. To establish that the finite z points are essential singularities,
consider z = −π/2, and note that in a neighborhood around this point,

exp(tan z) = exp

(
sin z

1

sin(z + π/2)

)
= exp

 sin z

z + π/2

∑
j≥0

[
(z + π/2)2

3!
− (z + π/2)4

5!
+ . . .

]j ,

and hence around z = −π/2, this function behaves like exp(1/z) around z = 0, i.e., as
an essential singularity.

(d) The point z = −1
2 + i

√
3
2 is a simple pole (isolated) with strength −i/

√
3, the point

z = 1
2 + i

√
3
2 is a simple pole (isolated) with strength i/

√
3, and z = ∞ is a simple pole

(isolated) of strength 1. The point at z = ∞ is the simplest to see with w = 1/z and
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since for large z, z3

z2+z+1
∼ z = 1

w , which is a simple pole of strength 1. The other two
poles are found at the roots of the denominator:

z2 + z + 1 = 0 =⇒ z = z0, z0 = −
1

2
+ i

√
3

2
,−1

2
− i

√
3

2

Hence, the function can be rewritten as,

z3

z2 + z + 1
=

z3

(z − z0)(z − z0)
.

corresponding to simple poles at z = z0, z0. The strength of the pole at z = z0 is given
by,

z30
z0 − z0

= − i√
3
z30 = − i√

3
z20z0

z20+z0+1=0
= − i√

3
(−1− z0)z0 = −

i√
3
(−z0 − z20) = −

i√
3

A similar computation can be carried out for the pole at z0, showing its strength is
+i/
√
3.

(e) The points z = 0,∞ are each a branch (non-isolated) singularity. For finite z, this
function has three branches. For two of the branches, z = 1 is a simple pole (isolated) with
strengths −3

2 + i
√
3/2 and −3

2 − i
√
3/2, respectively. The third branch has a removable

(isolated) singularity at z = 1. To see the branch point at ∞, make the substitution
w = 1/z, so that,

z1/3 − 1

z − 1
=

w(w−1/3 − 1)

1− w
.

Thus, we see through the w−1/3 term that w = 0 (z = ∞) is a branch point singularity
for this function. The point z = 0 is a branch point as can be seen directly by definition
of the function. To assess the situation around z = 1, we make the branch cut of the
function along the negative real axis, corresponding to three branches:

• Branch 1: z1/3 = |z|ei(arg z)/3 for arg z ∈ [−π, π)
• Branch 2: z1/3 = |z|ei(arg z)/3 for arg z ∈ [π, 3π)

• Branch 3: z1/3 = |z|ei(arg z)/3 for arg z ∈ [3π, 5π)

On branch 1 around z = 1, we have z1/3 → z1/3 for arg z around 0. Using the Taylor
expansion of z1/3 around z = 1, we have,

−1 + z1/3

z − 1
=
−1 + 1 + 1

3(z − 1) + . . .

z − 1
=

1

3
+ . . . ,

where . . . denote higher-order power series terms. Hence, z = 1 for Branch 1 a removable
singularity, and defining the function to have value 1/3 at z = 1 makes it analytic around

z = 1. On branch 2, we have z1/3 → ei2π/3z1/3 =
(
−1

2 + i
√
3
2

)
z1/3 for arg z around 0.

In this case, the numerator is analytic around z = 1 but does not vanish there (instead

taking on value −3/2 + i
√

3
2), so we conclude that z = 1 is a simple pole with strength

−3/2 + i
√

3
2 . A similar argument can be made for branch 3.

Akil Narayan: akil (at) sci.utah.edu 9



Homework 3
6720 Applied Complex Variables and Asymptotic Methods University of Utah

(f) The points z = 0,∞ are branch (non-isolated) points, and z = 1 is a branch (non-
isolated) point as well. That z = 0,∞ are branch points is a direct result from the fact
that these are branch points for z 7→

√
z. To see that z = 1 is a branch point, consider

the (non-principal) branch of
√
z, given by −

√
z for arg z ∈ [−π, π). Then,

log(1 +
√
z)→ log(1−

√
z),

so that z = 1 is also a branch point since logw has a branch point at w = 0. No additional
branch points are given by the principal branch of

√
z since 1+

√
z cannot vanish on the

principal branch of
√
z.

(i) z = ∞ is a cluster point (non-isolated) singularity, and z = i(2n + 1)π/2 are simple
poles either of strength +1 or −1. To see that z = ∞ is a cluster point, note that
cosh(1/w) has infinitely many zeros near w = 0. To establish that the other, finite
points are simple poles, note that cosh z = cos iz has roots at z = i(2n + 1)π/2, and
(cos iz)/(z− i(2n+1)π/2) has a limit at z = i(2n+1)π/2 either ±i, so that sech z has a
simple pole there of strength ±i. In particular, the pole at z = i(2n+1)π/2 has strength
i(−1)n+1.

(j) z = 0 is a cluster (non-isolated) point, z =∞ is a simple pole with strength 1, and z = i
nπ

for n ∈ Z\{0} are simple poles of strength ±1. To see that z = 0 is a cluster point, note
that sinhw vanishes infinitely often for w near infinity, so coth 1/z has infinitely many
singularities near z = 0. That z = ∞ is a simple pole can be understood since with
w = 1/z, then coth 1/z = cothw = (coshw)/(sinhw), and sinhw vanishes at 0. To
identify that this is a pole, note that around w = 0,

sinhw = −i sin(iw) = −i
(
iw − (iw)3

3!
+ . . .

)
= w + . . . ,

where . . . denote higher order power series terms. Hence, cothw behaves like cosh(0)/w
near w = 0, hence the strength of the w = 0 pole is 1. Similarly, z = i/(nπ) for n ∈ Z\{0}
are where sinh 1/z vanish linearly, and hence are where coth z has simple poles of strength
1/(nπ)2, as can be seen by computing the limit of (z − i/(nπ))coth(1/z) as z → i/(nπ).

3.5.2. Evaluate the integral
∮
C f(z) dz, where C is a unit circle centered at the origin, and

where f(z) is given below.

(a) g(z)
z−w , g(z) entire

(b) z
z2−w2

(c) ze1/z
2

Solution: We will use characterizations of singularities to address these problems, although
an equally acceptable (and frequently simpler) way is to use the Cauchy integral formula. We
recall from the solution of problem 3.3.4 that if f has a Laurent series around 0, then the
integral of f around a simple closed contour C lying within the region of convergence of the
series equals the c−1 coefficient of the series. In addition, we assume in what follows that
w either is enclosed by C, or lies outside it. (If w lies on C, then the integrals do not have
convergent values.)
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(a) Since g is entire, then we may expand it in the Taylor series,

g(z) =
∑
j≥0

g(j)(w)

j!
(z − w)j .

which is uniformly convergent on and in a neighborhood of C. Then using the fact that
for an arbitrary k ∈ Z,

∮
C(z − w)k dz = 2πi if and only if both k = −1 and C encloses

w (and is zero otherwise), then∮
C

g(z)

z − w
dz =

∑
j≥0

g(j)(w)

j!

∮
C
(z − w)j−1 dz = g(w)

∮
C
(z − w)−1 dz

=

{
2πig(w), C encloses w

0, otherwise

(b) If w (and hence also −w) lies outside C, then f(z) is only singular at points outside C,
and therefore is analytic inside C. Then by Cauchy-Goursat,

∮
C f(z) dz = 0. If instead

w is enclosed by C, then we use partial fractions along with a Laurent series expansion
around 0 using the geometric series, valid for |z| > |w| and thus in particular on C:

z

z2 − w2
=

1/2

z − w
+

1/2

z + w
=

(
1

2z

)
1

1− w
z

+

(
1

2z

)
1

1 + w
z

=
1

2z

∑
j≥0

(w
z

)j
+

1

2z

∑
j≥0

(
−w

z

)j
.

Again we have
∮
C zk dz = 0 for k < −1, so only the j = 0 terms (corresponding to simple

poles of f) produce non-zero contribution by integrating over C:∮
C

z

z2 − w2
dz =

∮
C

1

2z
dz +

∮
C

1

2z
dz = 2πi.

(c) The function e1/z
2
has an essential singularity at z = 0. Using a Laurent expansion

around 0 (valid on C), then:∮
C
ze1/z

2
dz =

∮
C

∑
j≥0

z1−2j

j!
dz =

∑
j≥0

1

j!

∮
C
z1−2j dz =

∮
C
z−1 dz = 2πi.
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