
Department of Mathematics, University of Utah
Applied Complex Variables and Asymptotic Methods

MATH 6720 – Section 001 – Spring 2023
Homework 2

Complex integration

Due: Friday, Feb 17, 2023

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 2.4.1
2.4.4
2.4.8
2.5.2
2.5.3

Submit your homework assignment on Canvas via Gradescope.

2.4.1. From the basic definition of complex integration, evaluate the integral
∮
C f(z) dz, where

C is the parameterized unit circle enclosing the origin, C : x(t) = cos t, y(t) = sin t or z = eit,
and where f(z) is given by,
(a) z2

(b) z2

(c) z+1
z2

Solution:
(a) We parameterize the unit circle with 0 ≤ t ≤ 2π, and since z = eit use,

dz = ieit dt,

to write the integral:∫
C
z2 dz =

∫ 2π

0

(
eit
)2

ieit dt =

∫ 2π

0
ie3it dt = 0

(b) With the same parameterization as the previous part, we have,∫
C
z2 dz =

∫ 2π

0

(
e−it

)2
ieit dt = i

∫ 2π

0
e−it dt = 0

(c) With the same parameterization as the previous part, we have,∫
C

z + 1

z2
dz =

∫ 2π

0

eit + 1

e2it
ieit dt = i

∫ 2π

0
(1 + e−it) dt = 2πi.

2.4.4. Use the principal branch of log z and z1/2 to evaluate,
(a)

∫ 1
−1 log z dz
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(b)
∫ 1
−1 z

1/2 dz

Solution:
(a) These integrals can be recast as real-valued integrals. To begin, we recall that for a real

variable x:∫ 1

0
log x dx = lim

ϵ↓0

∫ 1

ϵ
log x dx

IbP
= lim

ϵ↓0
(y log y − y)

∣∣1
ϵ
= lim

ϵ↓0
(−1− ϵ log ϵ+ ϵ) = −1.

We now write, ∫ 1

−1
log z dz =

∫ 0

−1
log z dz +

∫ 1

0
log z dz.

The second integral, being an integral of a real-valued function over a real interval, takes
value -1 as we have already established. Since we are on the principal branch of the
logarithm, then log z = log |z| + i arg z, where arg z ∈ [−π, π). In our case, z = |z|e−iπ

for |z| ∈ [0, 1], so we have:∫ 0

−1
log z dz =

∫ 0

−1
(log |z| − iπ) dz =

∫ 1

0
(log x− iπ) dx = −iπ − 1.

Putting everything together, we have:∫ 1

−1
log z dz =

∫ 0

−1
log z dz +

∫ 1

0
log z dz = −iπ − 1− 1 = −2− iπ.

(b) For the principal branch of the square root function, we treat z = |z|ei arg z, with arg z ∈
[−π, π). I.e., the integral we wish to compute takes the form,∫ 1

−1
z1/2 dz =

∫ 0

−1
z1/2 dz +

∫ 1

0
z1/2 dz

= e−iπ/2

∫ 0

−1
|z|1/2 dz +

∫ 1

0
z1/2 dz = (1− i)

∫ 1

0
z1/2 dz,

where we have used the fact that the value of |z|1/2 on [−1, 0] equals (a reflection of)
that of z1/2 on [0, 1]. This last integral is directly computable via the parameterization:

z(t) = t, t ∈ [0, 1],

i.e., ∫ 1

0
z1/2 dz =

∫ 1

0

√
t dt =

2

3
,

and hence, ∫ 1

−1
z1/2 dz = (1− i)

2

3
.
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2.4.8. Let C be an arc of the circle |z| = R, (R > 1) of angle π/3. Show that∣∣∣∣∫
C

dz

z3 + 1
dz

∣∣∣∣ ≤ π

3

(
R

R3 − 1

)
, (1)

and deduce limR→∞
∫
C

dz
z3+1

dz = 0.

Solution: We seek to use the result stating that if |f(z)| ≤ M over a contour C of arclength
L, then, ∣∣∣∣∫

C
f(z) dz

∣∣∣∣ ≤ ML. (2)

The length of this contour (a radius-R circular arc of angle π/3) has value L = Rπ/3. To
compute M for f(z) = 1

z3+1
, we note that

max
z∈C

|f(z)| ≤ max
|z|=R

|f(z)| = max
|z|=R

∣∣∣∣ 1

z3 + 1

∣∣∣∣ = 1

min|z|=R |z3 + 1|
.

We compute the desired minimum via the (reverse) triangle inequality:

min
|z|=R

|z3 + 1| ≥ min
|z|=R

|z3| − 1 = R3 − 1.

Hence, we have

max
z∈C

|f(z)| ≤ 1

R3 − 1
:= M.

Using L = Rπ/3 and M = 1/(R3 − 1) in (2) proves (1). The subsequent limit is immediate:

lim
R→∞

∫
C

dz

z3 + 1
dz ≤ lim

R→∞

∣∣∣∣∫
C

dz

z3 + 1
dz

∣∣∣∣ ≤ lim
R→∞

π

3

R

R3 − 1
= 0.

2.5.2. Use partial fractions to evaluate the following integrals
∮
C f(z) dz, where C is the unit

circle centered at the origin, and f(z) is given by the following:
(a) 1

z(z−2)

(b) z
z2−1/9

(c) 1
z(z+ 1

2
)(z−2)

Solution:
(a) We know that for an arbitrary complex number a,∮

C

1

z − a
dz =

{
0, a is outside C

2πi, a is inside C
(3)

We will use this property to evaluate the integral once we have expanded in partial
fractions. f(z) has poles at z = 0, z = 2, so we use the ansatz,

f(z) =
C1

z
+

C2

z − 2
.

Akil Narayan: akil (at) sci.utah.edu 3



Homework 2
6720 Applied Complex Variables and Asymptotic Methods University of Utah

By clearing denominators, this leads to the following linear system for the unknowns
C1, C2:

−2C1 = 1,
C1 + C2 = 0

}
=⇒ (C1, C2) =

(
−1

2
,
1

2

)
.

Hence, ∮
C
f(z) dz = −1

2

∮
C

1

z
dz +

1

2

∮
C

1

z − 2
dz

(3)
= −πi

(b) The partial fractions ansatz in this case is,

f(z) =
C1

z − 1/3
+

C2

z + 1/3
,

resulting in the linear system,

C1 + C2 = 1,
C1 − C2 = 0

}
=⇒ (C1, C2) =

(
1

2
,
1

2

)
.

Therefore, ∮
C
f(z) dz =

1

2

∮
C

1

z − 1/3
dz +

1

2

∮
C

1

z + 1/3
dz

(3)
= πi+ πi = 2πi

(c) The partial fractions ansatz for this function is,

f(z) =
C1

z
+

C2

z + 1
2

+
C3

z − 2
,

resulting in the linear system,

C1 + C2 + C2 = 0
−3

2C1 − 2C2 +
1
2C3 = 0

−C1 = 1,

 =⇒ (C1, C2, C3) =

(
−1,

4

5
,
1

5

)

Therefore,∮
C
f(z) dz = −1

∮
C

1

z
dz +

4

5

∮
C

1

z + 1/2
dz +

1

5

∮
C

1

z − 2
dz

(3)
= −2πi+

8

5
πi = −2

5
πi.

2.5.3. Evaluate the following integral, ∮
C

eiz

z(z − π)
dz,

for each of the following four cases (all circle are centered at the origin; use Eq. (1.2.19) as
necessary).
(a) C is the boundary of the annulus between circles of radius 1 and radius 3.
(b) C is the boundary of the annulus between circles of radius 1 and radius 4.
(c) C is a circle of radius R, where R > π.
(d) C is a circle of radius R, where R < π.
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Solution: Before beginning the exercises, we make the following computation, which will be
useful:

f(z) :=
eiz

z(z − π)

partial fractions
= − 1

π

eiz

z
+

1

π

eiz

z − π

= − 1

π

eiz

z
+

eiπ

π

ei(z−π)

z − π

Eqn. (1.2.19)
= − 1

π

∑∞
k=0

zk

k!

z
− 1

π

∑∞
k=0

(z−π)k

k!

(z − π)

= − 1

πz
− 1

π(z − π)
+

1

π

(
−

∞∑
k=1

zk−1

k!
−

∞∑
k=1

(z − π)k−1

k!

)
︸ ︷︷ ︸

g(z)

= − 1

πz
− 1

π(z − π)
+ g(z),

where g(z) is entire. Since g(z) is entire, then for a curve C enclosing a connected or multiply
connected region, we have,∮

C
f(z) dz = − 1

π

∮
C

(
1

z
+

1

z − π

)
dz +

∮
C
g(z) dz = − 1

π

∮
C

(
1

z
+

1

z − π

)
dz. (4)

We will use the above property to compute solutions to this problem:
(a) This curve C does not enclose the points z = 0 or z = π, and hence h is analytic inside

the enclosed region, so that by the Cauchy-Goursat Theorem,∮
C
f(z) dz = 0.

(b) This curve C encloses the point z = π, but not z = 0. Hence,∮
C
f(z) dz

(4)
= − 1

π

∮
C

1

z
dz − 1

π

∮
C

1

z − π
dz

(3)
= − 1

π
(0 + 2πi) = −2i.

(c) This region includes both points z = 0 and z = π. Therefore,∮
C
f(z) dz

(4)
= − 1

π

∮
C

1

z
dz − 1

π

∮
C

1

z − π
dz

(3)
= − 1

π
(2πi+ 2πi) = −4i.

(d) This region includes z = 0, but not z = π. Therefore,∮
C
f(z) dz

(4)
= − 1

π

∮
C

1

z
dz − 1

π

∮
C

1

z − π
dz

(3)
= − 1

π
(2πi+ 0) = −2i.
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