Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2023
 Homework 2
 Complex integration

Due: Friday, Feb 17, 2023

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 2.4.1
2.4.4
2.4.8
2.5.2
2.5.3

Submit your homework assignment on Canvas via Gradescope.
2.4.1. From the basic definition of complex integration, evaluate the integral $\oint_{C} f(z) \mathrm{d} z$, where C is the parameterized unit circle enclosing the origin, $C: x(t)=\cos t, y(t)=\sin t$ or $z=e^{i t}$, and where $f(z)$ is given by,
(a) z^{2}
(b) \bar{z}^{2}
(c) $\frac{z+1}{z^{2}}$

Solution:

(a) We parameterize the unit circle with $0 \leq t \leq 2 \pi$, and since $z=e^{i t}$ use,

$$
\mathrm{d} z=i e^{i t} \mathrm{~d} t,
$$

to write the integral:

$$
\int_{C} z^{2} \mathrm{~d} z=\int_{0}^{2 \pi}\left(e^{i t}\right)^{2} i e^{i t} \mathrm{~d} t=\int_{0}^{2 \pi} i e^{3 i t} \mathrm{~d} t=0
$$

(b) With the same parameterization as the previous part, we have,

$$
\int_{C} \bar{z}^{2} \mathrm{~d} z=\int_{0}^{2 \pi}\left(e^{-i t}\right)^{2} i e^{i t} \mathrm{~d} t=i \int_{0}^{2 \pi} e^{-i t} \mathrm{~d} t=0
$$

(c) With the same parameterization as the previous part, we have,

$$
\int_{C} \frac{z+1}{z^{2}} \mathrm{~d} z=\int_{0}^{2 \pi} \frac{e^{i t}+1}{e^{2 i t}} i e^{i t} \mathrm{~d} t=i \int_{0}^{2 \pi}\left(1+e^{-i t}\right) \mathrm{d} t=2 \pi i .
$$

2.4.4. Use the principal branch of $\log z$ and $z^{1 / 2}$ to evaluate,
(a) $\int_{-1}^{1} \log z \mathrm{~d} z$
(b) $\int_{-1}^{1} z^{1 / 2} \mathrm{~d} z$

Solution:

(a) These integrals can be recast as real-valued integrals. To begin, we recall that for a real variable x :

$$
\int_{0}^{1} \log x \mathrm{~d} x=\left.\lim _{\epsilon \downarrow 0} \int_{\epsilon}^{1} \log x \mathrm{~d} x \stackrel{\mathrm{IbP}}{=} \lim _{\epsilon \downarrow 0}(y \log y-y)\right|_{\epsilon} ^{1}=\lim _{\epsilon \downarrow 0}(-1-\epsilon \log \epsilon+\epsilon)=-1 .
$$

We now write,

$$
\int_{-1}^{1} \log z \mathrm{~d} z=\int_{-1}^{0} \log z \mathrm{~d} z+\int_{0}^{1} \log z \mathrm{~d} z
$$

The second integral, being an integral of a real-valued function over a real interval, takes value -1 as we have already established. Since we are on the principal branch of the $\operatorname{logarithm}$, then $\log z=\log |z|+i \arg z$, where $\arg z \in[-\pi, \pi)$. In our case, $z=|z| e^{-i \pi}$ for $|z| \in[0,1]$, so we have:

$$
\int_{-1}^{0} \log z \mathrm{~d} z=\int_{-1}^{0}(\log |z|-i \pi) \mathrm{d} z=\int_{0}^{1}(\log x-i \pi) \mathrm{d} x=-i \pi-1 .
$$

Putting everything together, we have:

$$
\int_{-1}^{1} \log z \mathrm{~d} z=\int_{-1}^{0} \log z \mathrm{~d} z+\int_{0}^{1} \log z \mathrm{~d} z=-i \pi-1-1=-2-i \pi .
$$

(b) For the principal branch of the square root function, we treat $z=|z| e^{i \arg z}$, with $\arg z \in$ $[-\pi, \pi)$. I.e., the integral we wish to compute takes the form,

$$
\begin{aligned}
\int_{-1}^{1} z^{1 / 2} \mathrm{~d} z & =\int_{-1}^{0} z^{1 / 2} \mathrm{~d} z+\int_{0}^{1} z^{1 / 2} \mathrm{~d} z \\
& =e^{-i \pi / 2} \int_{-1}^{0}|z|^{1 / 2} \mathrm{~d} z+\int_{0}^{1} z^{1 / 2} \mathrm{~d} z=(1-i) \int_{0}^{1} z^{1 / 2} \mathrm{~d} z
\end{aligned}
$$

where we have used the fact that the value of $|z|^{1 / 2}$ on $[-1,0]$ equals (a reflection of) that of $z^{1 / 2}$ on $[0,1]$. This last integral is directly computable via the parameterization:

$$
z(t)=t, \quad t \in[0,1],
$$

i.e.,

$$
\int_{0}^{1} z^{1 / 2} \mathrm{~d} z=\int_{0}^{1} \sqrt{t} \mathrm{~d} t=\frac{2}{3},
$$

and hence,

$$
\int_{-1}^{1} z^{1 / 2} \mathrm{~d} z=(1-i) \frac{2}{3} .
$$

2.4.8. Let C be an arc of the circle $|z|=R,(R>1)$ of angle $\pi / 3$. Show that

$$
\begin{equation*}
\left|\int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z\right| \leq \frac{\pi}{3}\left(\frac{R}{R^{3}-1}\right), \tag{1}
\end{equation*}
$$

and deduce $\lim _{R \rightarrow \infty} \int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z=0$.
Solution: We seek to use the result stating that if $|f(z)| \leq M$ over a contour C of arclength L, then,

$$
\begin{equation*}
\left|\int_{C} f(z) \mathrm{d} z\right| \leq M L \tag{2}
\end{equation*}
$$

The length of this contour (a radius- R circular arc of angle $\pi / 3$) has value $L=R \pi / 3$. To compute M for $f(z)=\frac{1}{z^{3}+1}$, we note that

$$
\max _{z \in C}|f(z)| \leq \max _{|z|=R}|f(z)|=\max _{|z|=R}\left|\frac{1}{z^{3}+1}\right|=\frac{1}{\min _{|z|=R}\left|z^{3}+1\right|}
$$

We compute the desired minimum via the (reverse) triangle inequality:

$$
\min _{|z|=R}\left|z^{3}+1\right| \geq \min _{|z|=R}\left|z^{3}\right|-1=R^{3}-1 .
$$

Hence, we have

$$
\max _{z \in C}|f(z)| \leq \frac{1}{R^{3}-1}:=M
$$

Using $L=R \pi / 3$ and $M=1 /\left(R^{3}-1\right)$ in (2) proves (1). The subsequent limit is immediate:

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z \leq \lim _{R \rightarrow \infty}\left|\int_{C} \frac{\mathrm{~d} z}{z^{3}+1} \mathrm{~d} z\right| \leq \lim _{R \rightarrow \infty} \frac{\pi}{3} \frac{R}{R^{3}-1}=0
$$

2.5.2. Use partial fractions to evaluate the following integrals $\oint_{C} f(z) \mathrm{d} z$, where C is the unit circle centered at the origin, and $f(z)$ is given by the following:
(a) $\frac{1}{z(z-2)}$
(b) $\frac{z}{z^{2}-1 / 9}$
(c) $\frac{1}{z\left(z+\frac{1}{2}\right)(z-2)}$

Solution:

(a) We know that for an arbitrary complex number a,

$$
\oint_{C} \frac{1}{z-a} \mathrm{~d} z=\left\{\begin{align*}
0, & a \text { is outside } C \tag{3}\\
2 \pi i, & a \text { is inside } C
\end{align*}\right.
$$

We will use this property to evaluate the integral once we have expanded in partial fractions. $f(z)$ has poles at $z=0, z=2$, so we use the ansatz,

$$
f(z)=\frac{C_{1}}{z}+\frac{C_{2}}{z-2} .
$$

By clearing denominators, this leads to the following linear system for the unknowns C_{1}, C_{2} :

$$
\left.\begin{array}{c}
-2 C_{1}=1, \\
C_{1}+C_{2}=0
\end{array}\right\} \Longrightarrow\left(C_{1}, C_{2}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

Hence,

$$
\oint_{C} f(z) \mathrm{d} z=-\frac{1}{2} \oint_{C} \frac{1}{z} \mathrm{~d} z+\frac{1}{2} \oint_{C} \frac{1}{z-2} \mathrm{~d} z \stackrel{(3)}{=}-\pi i
$$

(b) The partial fractions ansatz in this case is,

$$
f(z)=\frac{C_{1}}{z-1 / 3}+\frac{C_{2}}{z+1 / 3},
$$

resulting in the linear system,

$$
\left.\begin{array}{l}
C_{1}+C_{2}=1, \\
C_{1}-C_{2}=0
\end{array}\right\} \Longrightarrow\left(C_{1}, C_{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

Therefore,

$$
\oint_{C} f(z) \mathrm{d} z=\frac{1}{2} \oint_{C} \frac{1}{z-1 / 3} \mathrm{~d} z+\frac{1}{2} \oint_{C} \frac{1}{z+1 / 3} \mathrm{~d} z \stackrel{(3)}{=} \pi i+\pi i=2 \pi i
$$

(c) The partial fractions ansatz for this function is,

$$
f(z)=\frac{C_{1}}{z}+\frac{C_{2}}{z+\frac{1}{2}}+\frac{C_{3}}{z-2},
$$

resulting in the linear system,

$$
\left.\begin{array}{c}
C_{1}+C_{2}+C_{2}=0 \\
-\frac{3}{2} C_{1}-2 C_{2}+\frac{1}{2} C_{3}=0 \\
-C_{1}=1,
\end{array}\right\} \Longrightarrow\left(C_{1}, C_{2}, C_{3}\right)=\left(-1, \frac{4}{5}, \frac{1}{5}\right)
$$

Therefore,

$$
\oint_{C} f(z) \mathrm{d} z=-1 \oint_{C} \frac{1}{z} \mathrm{~d} z+\frac{4}{5} \oint_{C} \frac{1}{z+1 / 2} \mathrm{~d} z+\frac{1}{5} \oint_{C} \frac{1}{z-2} \mathrm{~d} z \stackrel{(3)}{=}-2 \pi i+\frac{8}{5} \pi i=-\frac{2}{5} \pi i .
$$

2.5.3. Evaluate the following integral,

$$
\oint_{C} \frac{e^{i z}}{z(z-\pi)} \mathrm{d} z
$$

for each of the following four cases (all circle are centered at the origin; use Eq. (1.2.19) as necessary).
(a) C is the boundary of the annulus between circles of radius 1 and radius 3 .
(b) C is the boundary of the annulus between circles of radius 1 and radius 4 .
(c) C is a circle of radius R, where $R>\pi$.
(d) C is a circle of radius R, where $R<\pi$.

Solution: Before beginning the exercises, we make the following computation, which will be useful:

$$
\begin{aligned}
& f(z):=\frac{e^{i z}}{z(z-\pi)} \stackrel{\text { partial fractions }}{=}-\frac{1}{\pi} \frac{e^{i z}}{z}+\frac{1}{\pi} \frac{e^{i z}}{z-\pi} \\
&=-\frac{1}{\pi} \frac{e^{i z}}{z}+\frac{e^{i \pi}}{\pi} \frac{e^{i(z-\pi)}}{z-\pi} \\
& \text { Eqn. } \stackrel{(1.2 .29)}{=}-\frac{1}{\pi} \frac{\sum_{k=0}^{\infty}}{z}-\frac{z^{k}}{k!} \\
&=-\frac{1}{\pi z}-\frac{1}{\pi(z-\pi)}+\underbrace{\infty}_{k=0} \frac{1}{\pi}\left(-\sum_{k=1}^{\infty} \frac{(z-\pi)^{k}}{k-1}\right. \\
& k! \\
& z^{k-1} \\
&\left.k=\sum_{k=1}^{\infty} \frac{(z-\pi)^{k-1}}{k!}\right) \\
&=-\frac{1}{\pi z}-\frac{1}{\pi(z-\pi)}+g(z),
\end{aligned}
$$

where $g(z)$ is entire. Since $g(z)$ is entire, then for a curve C enclosing a connected or multiply connected region, we have,

$$
\begin{equation*}
\oint_{C} f(z) \mathrm{d} z=-\frac{1}{\pi} \oint_{C}\left(\frac{1}{z}+\frac{1}{z-\pi}\right) \mathrm{d} z+\oint_{C} g(z) \mathrm{d} z=-\frac{1}{\pi} \oint_{C}\left(\frac{1}{z}+\frac{1}{z-\pi}\right) \mathrm{d} z \tag{4}
\end{equation*}
$$

We will use the above property to compute solutions to this problem:
(a) This curve C does not enclose the points $z=0$ or $z=\pi$, and hence h is analytic inside the enclosed region, so that by the Cauchy-Goursat Theorem,

$$
\oint_{C} f(z) \mathrm{d} z=0 .
$$

(b) This curve C encloses the point $z=\pi$, but not $z=0$. Hence,

$$
\begin{aligned}
& \oint_{C} f(z) \mathrm{d} z \stackrel{(4)}{=}-\frac{1}{\pi} \oint_{C} \frac{1}{z} \mathrm{~d} z-\frac{1}{\pi} \oint_{C} \frac{1}{z-\pi} \mathrm{d} z \\
& \stackrel{(3)}{=}-\frac{1}{\pi}(0+2 \pi i)=-2 i .
\end{aligned}
$$

(c) This region includes both points $z=0$ and $z=\pi$. Therefore,

$$
\begin{aligned}
& \oint_{C} f(z) \mathrm{d} z \stackrel{(4)}{=}-\frac{1}{\pi} \oint_{C} \frac{1}{z} \mathrm{~d} z-\frac{1}{\pi} \oint_{C} \frac{1}{z-\pi} \mathrm{d} z \\
& \stackrel{(3)}{=}-\frac{1}{\pi}(2 \pi i+2 \pi i)=-4 i
\end{aligned}
$$

(d) This region includes $z=0$, but not $z=\pi$. Therefore,

$$
\begin{gathered}
\oint_{C} f(z) \mathrm{d} z \stackrel{(4)}{=}-\frac{1}{\pi} \oint_{C} \frac{1}{z} \mathrm{~d} z-\frac{1}{\pi} \oint_{C} \frac{1}{z-\pi} \mathrm{d} z \\
\stackrel{(3)}{=}-\frac{1}{\pi}(2 \pi i+0)=-2 i
\end{gathered}
$$

