DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH
Applied Complex Variables and Asymptotic Methods
MATH 6720 — Section 001 — Spring 2023
Homework 1
Analytic functions, I

Due: Friday, Feb 3, 2023

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 2.1.1
2.1.5
2.2.1
2.2.2
2.2.3
Submit your homework assignment on Canvas via Gradescope.

2.1.1. Which of the following satisfy the Cauchy-Riemann (C-R) equations? If they satisfy
the C-R equations, give the analytic function of z.

(&) f(z,y) =z —iy+1

(b) fz,y) =y* = 32%y +i(2® — 3xy® +2)

(¢) f(x,y) =eY(cosz + isiny)

Solution:
(a) With u(z,y) =2 + 1 and v(z,y) = —y, the C-R equations read,

Uy =1# -1 =1,

Uy =0=0=—vg.

Hence, the C-R equations are not satisfied.
(b) With u(z,y) = 3> — 322y and v(x,y) = 23 — 3zy? + 2, the C-R equations read,

Uy = —b6xy = —62y = vy

Uy = 3y? — 322 = =322 + 3y% = —v,.

Since u and v satisfy the C-R equations (everywhere), then f is analytic as a function of
z. Since

iz3 = i(x +iy)3 =iz + y° — 322y — i3z = f(x,y) — 2,

then we conclude that f(z,y) = iz3 + 2i.
(¢) With u(z,y) = €Y cosz and v(z,y) = e¥siny, the C-R equations read,

uy = —e¥sinx e¥(siny + cosy) = vy

uy =e’cosz 0= —v,.
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It is unclear if the two expressions on each line are equal: to determine this, the second
set of equations requires

2k +1
eYcosx =0 = coszr=0 = x:(—;)ﬂ,kez.

The first set of equations requires

siny 4 cosy = (—1)F
Therefore:
k odd = siny =1 or cosyzl:yzW,er, n € 7.
k even = siny = —1l or cosy = —1 =y = W,@n%— l)m, ne€Z.

In all of these cases, any (z,y) satisfying the C-R equations is an isolated point, but f is
not differentiable in any neighborhood around these points, so f is not analytic.

2.1.5. Let f(z) be analytic in some domain. Show that f(z) is necessarily a constant if either
the function f(z) is analytic or f(z) assumes only pure imaginary values in the domain.

Solution: Consider first the second case, where we assume both that f is analytic and assumes
only purely imaginary values, i.e., f(z) = iv(z,y). By the C-R equations,

Uy =0 =10y

Uy =0 = —vg,

so that v, = vy, = 0, hence v(z,y) = C, and so f(x,y) = iC, where C must be real since f is
purely imaginary-valued.

In the second case, we assume that both f(z) and f(z) are analytic. Then with f(z) = u + iv
and f(z) = u — iv, the C-R equations applied to both functions implies,

Uy = Uy, Uy = —Ug

Uy = —Uy, Uy = Vg,

where the first row contains the C-R conditions applied to f, and the second row contains the
C-R conditions applied to f. The first column of equalities implies,

vy = Uy = 0,
and the second column implies,
Vg = uy = 0.

Le., uy = uy = 0 and v, = v, = 0, so that both « and v must be constant. Thus, f(z) = u+iv
is also constant.

2.2.1. Find the location of the branch points and discuss possible branch cuts for the following
functions:

(a) W
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(b)
()
(d)

(z+1—20)1/4
2log 2?
V2

Solution:

(a)

The branch points of this function are at z = 1, c0. To see why z = 1 is a branch point,
consider z = 1+ ee? for a fixed € > 0 and for § € [0, 27]. Then:

1 ; 1 .
_ 1 —-1/2 _ 0\—1/2 _ —19/2).
(z —1)1/2 -1 (%) \/Ee

I O B S IR PO A
- to NG =~ which is a

As 0 sweeps from 0 — 27, the function sweeps from
different value. Hence, z = 1 is a branch point. To establish that z = oo is a branch
point, we use the transformation z — 1 = 1/¢, so the function becomes /¢, which we

already know has a branch point at ¢ =0, i.e., z = o0.

Any simple curve connecting z = 1 to z = oo can serve as a branch cut. E.g., the positive
real axis to the right of 1, i.e., Re(z) > 1, Im (2) = 0, is a particularly simple choice.
The branch points of this function are z = —14 24, co. To establish this, we first consider
a mapped version of the function:

fw) = w4, w=z+1-—2i.
Note that f(w) has branch points at w = 0 and w = co (as shown in the text), which
correspond to z = —1 + 2¢ and z = oo, as desired.
Again, any simple curve connecting z = —1 + 27 to z = 0o can seve as a branch cut, and

one simple choice can be the semi-infinite ray defined by Re (2) > —1, Im (2) = 2.

The branch points of this function are z = 0, co. To establish this for z = 0, take z = ee’
for a small € > 0 and 6 € [0,27]. At § = 0 the function takes value 4loge. As 6 sweeps
from 0 to 2w, the function takes the value

0

2 log (6612”) =4loge + 4im # 4loge,

showing a discontinuity. Thus, z = 0 is a branch point. To establish that z = oo is
a branch point, we make the transformation w = 1/z, so that the new function under
consideration is

f(w) = —2log(w?) = 2log(=?)

By the same arguments as above, f(w) has a branch point at w = 0, i.e., the original
function has a branch point at z = cc.

Any simple curve connecting z = 0 to z = 0o can serve as a branch cut. A simple choice
is the positive real axis, Re (z) > 0, Im (z) = 0.

The branch points of this function are z = 0 and z = co. Consider the curve z = \/ee?
for fixed € > 0 and 6 € [0, 27]. At # = 0, the function has value V2. As 0 increases from
0 to 2w, the function approaches takes the value,

(eei%)ﬂ _ V2V 4 V2

establishing that z = 0 is a branch point. To establish that z = oo is a branch point,

use the transformation z = 1/w, and consider the function f(w) = w=V2 = 2V2. We
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can use the same argument as above to show that f(w) has a branch point at w = 0,
corresponding to z = oo.

Any simple curve connecting z = 0 to z = 0o can serve as a branch cut; a simple choice
is the positive real axis defined by Re (z) > 0, Im (2) = 0.

2.2.2. Determine all possible values and give the principal value of the following numbers (put
in the form x + iy):
(a) il /2
1
(b) (1+i)1/2
(c) log(1 + v/3i)
(d) logi?
(e) i
(f)

Solution:
(a) The function z + 4/z has branch points at 0,00 with two branches; we consider any
branch cut not passing through ¢. The possible values, for any k € 7Z, are

) . 1/2 ) ) . 1 7
1/2 ( z7r/2+22k7r> _ in/4 jikm _ £+ in/4 _ £ < >
1 (& (& € € + .
V2 V2

The principal value is associated with & = 0 above, i.e., the (+) sign choice.
(b) The main branch complexity here stems from the z — /z map in the denominator, so
we compute this first. We again have for any k € Z,

(1 + Z-)l/2 _ (\/ﬁeiw/4+i27rk>1/2 _ 21/4€i7r/8+i7rk _ :l:21/4ez'7r/8

Therefore,

1 6—i7r/8 1
u+wﬂ:izviziym(

cos(m/8) —isin(m/8)).

(¢) Since the log function has infinitely many branches, this quantity takes on infinitely many
values. For any k € Z we have,

log <1 + \/§1> = log (2 (;? >> = log <26”/3+i2”k) =log2+1 <g + 27Tkz) .

The principal value occurs when k& = 0.
(d) Again for k € Z we directly compute,

log i® = log (ei3”/2+i2”k) =1 (327T + 27rk:> .

The principal value for the log function takes imaginary values on the interval [—7, ),
so the principal value above occurs with £ = —1, having value —im/2.
(e) For any k € Z we have,

i\/g = ((3”/2“27”“)\/g = ei\/g(”/H%k) = cos (\/3 (g + 27Tk>) + isin <\/§ (g + 27rl<:)) .

The principal value occurs for & = 0.
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(f) We express the inverse sine function in terms of the logarithm, and so for any k € Z we
have,

o, 1 4 F+ i e (2 Ly _ilog i/ 4+2mk
Sin — = —1 10 — = = = —1 10 E—— e = .
V2 & 2 V2 & V2 V2 —ilog ei3T/A+2mh,

So that we have the following pair of infinite values:

. —1 1 % + 271']{5,
sin”t — =< 4.

\/5 4 + 27k,
There are two principal values we must determine: first the principal value of z — /2,
and second the principal value of z — log z. For the first choice, we make the identification
+ — + in the computations above. Thus, we have,

sin™! — = —iloge

V2

The principal value of the log function above occurs when k& = 0, so that the principal
value is

im/4+27k

I . ; T
sin ! = —jloge'™* = =,

Sl

2.2.3. Solve for z:

(a) 2°=1

(b) 3+2e*" =1

(c) tanz =1
Solution:

1/5 i2rk

(a) We expect 5 values for z since the function w — w'/ takes five values. We write 1 = e

for k£ € Z and then take fifth roots:

25 = 6z27rk: 7 = ez27rk/5 =1, 61,27r/5’ 62471'/5’ ez67r/5, 6287T/5.

(b) We compute this solution via logarithms. We have for any k € Z:
el=—1 = z=1i+log(—1) =i+ loge™ 2™ — i (1 +7(2k+1)).

(¢c) We use the logarithmic form for the inverse tangent function. As an intermediate step,
we compute,

i—1 B \/iei3ﬂ/4 o
i+1 Jaema 0 "

Then for any k € Z we have

1 —1
z=tan" !l = z:?logl
i

I Zlogi: Zloge”/%ﬂzﬂC =n(k+1/4).
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