
Department of Mathematics, University of Utah
Applied Complex Variables and Asymptotic Methods

MATH 6720 – Section 001 – Spring 2023
Homework 0 Solutions

Basics of complex numbers

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 1.1.2 (b,d)
1.1.3
1.2.1
1.2.8
1.3.1
1.3.5

1.1.2. Express each of the following in the form a+ bi, where a and b are real:
(b) 1

1+i
(d) |3 + 4i|

Solution:
(b) We multiply both numerator and denominator by the complex conjugate:

1

1 + i
=

(1− i)

(1 + i)(1− i)
=

1− i

2
=

1

2
− i

1

2
,

i.e., a = 1/2 and b = −1/2.
(d) This is a purely real number:

|3 + 4i| =
√

32 + 42 = 5 = 5 + 0i,

so that a = 5, b = 0.

1.1.3. Solve for the roots of the following equations:
(a) z3 = 4
(b) z4 = −1
(c) (az + b)3 = c, where a, b, c > 0
(d) z4 + 2z2 + 2 = 0

Solution:
(a) We write

4 = 4ei0 =⇒ z =
3
√
4ei2π/3,

3
√
4ei2π/3,

3
√
4ei4π/3

(b) We have,

−1 = 1eiπ =⇒ z = eiπ/4, ei3π/4, e5π/4, e7π/4
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(c) Letting w = az + b, then we seek the roots w such that w3 = c with c > 0. Therefore,

w = 3
√
c, 3

√
cei2π/3, 3

√
cei4π/3.

Therefore, z = (w − b)/a takes values,

z =
1

a
( 3
√
c− b),

1

a
( 3
√
cei2π/3 − b),

1

a
( 3
√
cei4π/3 − b),

(d) We have,

z4 + 2z2 + 2 = 0 =⇒ (z2 + 1)2 + 1 = 0,

and hence z2 + 1 are the second roots of -1,

z2 + 1 = eiπ/2, ei3π/2 =⇒ z2 = −1± i =
√
2e3π/4,

√
2e5π/4.

Thus, z takes on the 4 values,

z =
4
√
2e3π/8,

4
√
2e11π/8, z =

4
√
2e5π/8,

4
√
2e13π/8.

1.2.1. Sketch the regions associated with the following inequalities. Determine if the region is
open, closed, bounded, or compact.
(a) |z| ≤ 1
(b) |2z + 1 + i| < 4
(c) Re (z) ≥ 4
(d) |z| ≤ |z + 1|
(e) 0 < |2z − 1| ≤ 2

Solution:
(a) The region is closed, bounded, and compact.
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Sketch for region in problem 1.2.1(a)
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(b) The region is open and bounded.
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Sketch for region in problem 1.2.1(b)

(c) The region is closed.
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Sketch for region in problem 1.2.1(c)

(d) The region is closed.
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Sketch for region in problem 1.2.1(d)

(e) The region is bounded.
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Sketch for region in problem 1.2.1(e)

1.2.5. Use any method to determine series expansions for the following functions:
(a) sin z

z
(b) cosh z−1

z2

(c) ez−1−z
z

Solution: Using formulas for known power series, we have:
(a)

sin z

z
=

1

z

∞∑
j=0

(−1)jz2j+1

(2j + 1)!
=

∞∑
j=0

(−1)jz2j

(2j + 1)!

(b)

cosh z − 1

z2
=

1

z2

−1 +
∞∑
j=0

z2j

(2j)!

 =
1

z2

∞∑
j=1

z2j

(2j)!
=

∞∑
j=1

z2j−2

(2j)!

(c)

ez − 1− z

z
=

1

z

−1− z +

∞∑
j=0

zj

j!

 =
1

z

∞∑
j=2

zj

j!
=

∞∑
j=2

zj−1

j!
=

∞∑
j=0

zj+1

(j + 2)!

1.2.6. Let z1 = x1 and z2 = x2 with x1, x2 real, and the relationship,

ei(x1+x2) = eix1eix2 ,

to deduce the known trigonometric formulae,

sin(x1 + x2) = sinx1 cosx2 + cosx1 sinx2 (1a)

cos(x1 + x2) = cosx1 cosx2 − sinx1 sinx2, (1b)

and therefore show,

sin 2x = 2 sinx cosx (2a)

cos 2x = cos2 x− sin2 x (2b)
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Solution: Using Euler’s identity, we have,

cos(x1 + x2) + i sin(x1 + x2) = ei(x1+x2) = eix1eix2 = (cosx1 + i sinx1)(cosx2 + i sinx2)

= (cosx1 cosx2 − sinx1 sinx2) + i (sinx1 cosx2 + cosx1 sinx2) .

The real and imaginary parts of the left- and right-hand sides above must be equal, implying
(1). The relation (2) is a directly result of (1) by setting x1 = x2 = x.

1.2.8. Consider the transformation,

w = z + 1/z, z = x+ iy, w = u+ iv.

Show that the image of the points in the upper half z plane (y > 0) that are exterior to the
circle |z| = 1 corresponds to the entire upper half plan v > 0.

Solution: Note that,

u = Re (w) = Re (z + 1/z) = x+Re (1/z) = x+Re

(
z

|z|2

)
= x

(
1 +

1

|z|2

)
,

v = Im (w) = Im (z + 1/z) = y + Im (1/z) = y + Im

(
z

|z|2

)
= y

(
1− 1

|z|2

)
.

Thus, if both y > 0 and z is exterior to |z| = 1, i.e., if y > 0 and |z| > 1, then

v = y

(
1− 1

|z|2

)
> 0,

so that z 7→ w for |z| > 1 and y > 0 maps onto the upper half plane v > 0. To show that
the image of this map is exactly the upper half plane, set r = |z|, and note that from the first
expressions, (

ru

r2 + 1

)2

+

(
rv

r2 − 1

)2

=
(x
r

)2
+
(y
r

)2
= 1,

i.e., circles of radius r > 1 in the z plane are mapped to ellipses in the w plane. Rewriting the
condition above, we have,(

u

R+ 1

)2

+

(
v

R− 1

)2

=
1

R
, R = r2.

We will use this relation to show that the image of z 7→ z + 1/z is the open upper half plane.
Let w = u+ iv be in the upper half plane, i.e., v > 0; our overall goal is to construct z = x+ iy
that maps to w. Define,

f1(R) :=

(
u

R+ 1

)2

+

(
v

R− 1

)2

,

f2(R) :=
1

R
.

where we now take R as an unknown. We seek to show that there exists some R > 1 such that
f1(R) = f2(R). Note that for R sufficiently large then f1(R) ≤ f2(R) because f1 ∼ 1/R2 and
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f2 ∼ 1/R. The technical details are:

R > 3 + 2max{u2, v2} R>1
=⇒ R− 2 +

1

R
> 2max{u2, v2}

=⇒ 1

R
>

2max{u2, v2}
(R− 1)2

>
u2

(R+ 1)2
+

v2

(R− 1)2
.

This establishes that f1(R) ≤ f2(R) for R sufficiently large. Similarly, for R > 1 sufficiently
small, we have f1(R) ≥ f2(R). To establish this, note that since v > 0, the inequality,(

v

R− 1

)2

≥ 1

R
⇐⇒ R2 − (v + 2)R+ 1 < 0,

becomes an equality when

R∗ = 1 +
v

2
+

1

2

√
v2 + 2v > 1,

and hence for R ∈ (1, R∗), then(
v

R− 1

)2

≥ 1

R
=⇒

(
u

R+ 1

)2

+

(
v

R− 1

)2

≥ 1

R
,

establishing that for R > 1 sufficiently small, then f1(R) ≥ f2(R). Since both f1 and f2 are
continuous functions for R > 1, then there must exist some point R = R(u, v) > 1 such that

f1(R) = f2(R) =⇒
(

u

R+ 1

)2

+

(
v

R− 1

)2

=
1

R
.

Now set,

x =
u

1 + 1
R

, y =
v

1− 1
R

.

By construction, z = x+ iy then satisfies |z| =
√
x2 + y2 =

√
R > 1, and Re (z) = y > 0 since

v > 0. This point z maps to (arbitrarily chosen) point w = u+ iv in the upper half plane.

1.3.1. Evaluate the following limits,
(a) limz→i(z + 1/z)
(b) limz→z0 1/z

m, m integer
(c) limz→i sinh z
(d) limz→0

sin z
z

(e) limz→∞
sin z
z

(f) limz→∞
z2

(3z+1)2

(g) limz→∞
z

z2+1

Solution:
(a) By direct evaluation, we have,

lim
z→i

z +
1

z
= i− i = 0
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(b) If z0 = 0, then the limit doesn’t exist. If z0 ̸= 0, the again by direct evaluation:

lim
z→z0

1

zm
=

1

zm0

(c) By direct evaluation,

lim
z→i

sinh z =
1

2
(ei − e−i) = iIm

(
ei
)
= i sin i.

(d) Via L’Hôpital’s Rule,

lim
z→0

sin z

z
= lim

z→0

cos z

1
= 1

(e) This limit does not exist. To see why, we compute the numerator for z = x+ iy:

sin z =
1

2i

(
eiz − e−iz

)
=

1

2i

(
e−y − ey + 2i sinx

)
.

While | sinx| is bounded by 1 as |z| → ∞, the quantity e−y − ey can approach either 0
(|z| → ∞ with y = 0) or ±∞ (|z| → ∞ with y → ±∞). With this behavior, sin z/z can
approach different values as |z| → ∞ and thus the limit does not exist.

(f) This limit exists: we compute it by computing the complementary limit that has equal
value,

lim
z→0

(
1
z

)2(
31
z + 1

)2 = lim
z→0

1

(3 + z)2
=

1

9
.

(g) We again look at the complementary limit,

lim
z→0

1
z

1
z2

+ 1
= lim

z→0

1

z + 1
z

= 0

1.3.5. Show that the functions Re (z) and Im (z) are nowhere differentiable.

Solution: By direct computation, we have,

lim
w→0

Re (z + w)− Re (z)

w
= lim

w→0

Re (w)

w
.

This limit is not unique; its value depends on how w approaches 0. Thus, Re (z) is nowhere
differentiable. A similar computation for Im (z) can be carried out.
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