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High order approximations

We are now very familiar with our rather standard approximation to uxx on an equidistant

grid:

D0u
n

j
« uxx ` Oph2q

Note that the h
2

truncation error is a direct result of our choice of 3-point stencil.

Using more points in the stencil allows us to attain higher order truncation errors.

1

12h2

“´u
n

j´2 ` 16un

j´1 ´ 30un

j
` 16un

j`1 ´ u
n

j`2

‰ « uxx ` O
h
2
.
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In general, using 2k ` 1 points allows us to achieve Oph2kq LTE.

Why stop here? Why not take k as large as possible?

This requires a stencil spreading over the whole domain, globally coupling all degrees of

freedom.

Is it worth it?
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Fourier Series, I

Before solving differential equations, let’s answer some basic approximation theory

questions first.

The simplest example of an approximation scheme that globally couples all degrees of

freedom is a Fourier Series.
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Fourier Series, I

Before solving differential equations, let’s answer some basic approximation theory

questions first.

The simplest example of an approximation scheme that globally couples all degrees of

freedom is a Fourier Series.

Consider a given u : r0, 2⇡s Ñ , which we represent as a sum of complex exponentials,

upxq «
ÿ

kP
puk�kpxq, �kpxq “ 1?

2⇡
e
ikx

.

The most straightforward strategy to identify puk is to choose them to minimize a loss,

puk “ argmin
puk,kP

›››››upxq ´
ÿ

kP
puk�kpxq

›››››

2

2

,

where we have introduced the norm and a corresponding inner product,

xf, gy :“
ª 2⇡

0
fpxqgpxqdx, }f}22 :“ xf, fy ,

where z is the complex conjugate of z.
1

1We are mostly interested in real-valued functions, so the introduction of complex arithmetic is somewhat
artificial here. We could write the basis as real-valued sin kx and cos kx functions with real coefficients. This
achieves the same results but uses somewhat more technical formulas.
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Fourier Series, II

We have conveniently chosen the basis �k so that,

x�k,�`y “
"

1, k “ `

0, k ‰ `

Such basis functions are orthonormal.

There is a unique solution for the puk that minimizes the loss, and using basis

orthonormality the solution has a fairly simple expression,

puk “ xu,�ky “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx.
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Fourier Series, II

We have conveniently chosen the basis �k so that,

x�k,�`y “
"

1, k “ `

0, k ‰ `

Such basis functions are orthonormal.

There is a unique solution for the puk that minimizes the loss, and using basis

orthonormality the solution has a fairly simple expression,

puk “ xu,�ky “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx.

This gives us a first taste of some functional analysis: Define,

L
2 “ L

2 pr0, 2⇡s; q “  
f : r0, 2⇡s Ñ

ˇ̌
}f}22 † 8(

.

Then Fourier Series representations are complete in L
2
:

u P L
2 ùñ lim

NÑ8

››››››
upxq ´

Nÿ

k“´N

puk�kpxq
››››››
2

“ 0,

and orthonormality of the basis results in Parseval’s identity,

u P L
2 ùñ }u}22 “

ÿ

kP
|puk|2 .
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Fourier approximation

upxq L
2

“
ÿ

kP
puk�kpxq, puk “ xu,�ky

This is all well and good, but how does this serve us computationally?

With finite storage, we have to truncate the infinite series,

upxq « uN pxq :“
ÿ

|k|§N

puk�kpxq

How well does uN approximate u?
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Fourier approximation

upxq L
2

“
ÿ

kP
puk�kpxq, puk “ xu,�ky

This is all well and good, but how does this serve us computationally?

With finite storage, we have to truncate the infinite series,

upxq « uN pxq :“
ÿ

|k|§N

puk�kpxq

How well does uN approximate u?

There is, of course, the other pesky issue that in practice we cannot actually compute puk

exactly, and so must resort to additional approximations.

But let’s focus on one sin at a time....
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Fourier approximation

upxq L
2

“
ÿ

kP
puk�kpxq, puk “ xu,�ky

This is all well and good, but how does this serve us computationally?

With finite storage, we have to truncate the infinite series,

upxq « uN pxq :“
ÿ

|k|§N

puk�kpxq

How well does uN approximate u?

There is, of course, the other pesky issue that in practice we cannot actually compute puk

exactly, and so must resort to additional approximations.

But let’s focus on one sin at a time....

So our question regards how compressible the infinite series is with respect to the

truncation N :

}u ´ uN }22
?
À hpNq,

for some function hpNq.
– h decays quickly with N Ñ u is very compressible

– h decays slowly with N Ñ u is not very compressible
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Projections

Before investigating Fourier approximation results, it’s worthwhile to introduce additional

concepts: Projections.

Given an operator P : L2 Ñ V , where V Ä L
2

is some subspace of L
2
, then P is a

projection operator if

P
2 “ P.

The action u fiÑ Pu projects u onto V .

The action u fiÑ pI ´ P qu projects u onto some subspace W such that V ‘ W “ L
2
.
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Projections

Before investigating Fourier approximation results, it’s worthwhile to introduce additional

concepts: Projections.

Given an operator P : L2 Ñ V , where V Ä L
2

is some subspace of L
2
, then P is a

projection operator if

P
2 “ P.

The action u fiÑ Pu projects u onto V .

The action u fiÑ pI ´ P qu projects u onto some subspace W such that V ‘ W “ L
2
.

For any projection operator P and any u P L
2
, we have,

pI ´ P qPu “ 0.

A projection operator P is orthogonal if W K V , equivalently if for every u, v P L
2
:

P “ P
˚
,

@
P

˚
u, v

D
:“ xu, Pvy .
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Truncation and projection

We are considering the truncation,

ÿ

kP
puk�kpxq L

2

“ u « uN “
ÿ

|k|§N

puk�kpxq.

This truncation is an orthogonal projector.

Theorem
Define PN as the operator,

PNu “ uN “
ÿ

|k|§
puk�kpxq, u

L
2

“
ÿ

kP
puk�k.

Then PN is an orthogonal projection operator.
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A basic approximation estimate, I

Can we bound }u ´ PN }2? First note that,

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 .
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A basic approximation estimate, I

Can we bound }u ´ PN }2? First note that,

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 .

Integration by parts is our friend, and note that,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx

“ i

k
?
2⇡

upxqe´ikx
ˇ̌2⇡
0

´ i

k
?
2⇡

ª 2⇡

0
u

1pxqe´ikxdx.
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A basic approximation estimate, I

Can we bound }u ´ PN }2? First note that,

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 .

Integration by parts is our friend, and note that,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx

“ i

k
?
2⇡

upxqe´ikx
ˇ̌2⇡
0

´ i

k
?
2⇡

ª 2⇡

0
u

1pxqe´ikxdx.

Note that, conveniently, the first term vanishes if up0q “ up2⇡q.
This is, of course, quite reasonable since we are approximating with periodic functions.

Note also that the remaining integral is the Fourier series coefficient for the derivative,

u
1pxq:

u
1pxq “

ÿ

|k|P
pu1
k�kpxq, pu1

k “ @
u

1
,�k

D
.

A. Narayan (U. Utah – Math/SCI) Math 6630: Approximation with Fourier Series



A basic approximation estimate, I

Can we bound }u ´ PN }2? First note that,

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 .

Integration by parts is our friend, and note that,

puk “ 1?
2⇡

ª 2⇡

0
upxqe´ikxdx

“ i

k
?
2⇡

upxqe´ikx
ˇ̌2⇡
0

´ i

k
?
2⇡

ª 2⇡

0
u

1pxqe´ikxdx.

Note that, conveniently, the first term vanishes if up0q “ up2⇡q.
This is, of course, quite reasonable since we are approximating with periodic functions.

Note also that the remaining integral is the Fourier series coefficient for the derivative,

u
1pxq:

u
1pxq “

ÿ

|k|P
pu1
k�kpxq, pu1

k “ @
u

1
,�k

D
.

Thus, if u is periodic and u
1 P L

2
(so that puk is well-defined), then

puk “ ´ i

k

pu1
k.
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A basic approximation estimate, II

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 ,

puk “ ´ i

k

pu1
k.

This very basic estimate for Fourier series coefficients implies:

}u ´ PNu}22 “
ÿ

|k|°N

1

|k|2
ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

§ 1

N2

ÿ

|k|°N

ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

§ 1

N2

ÿ

kP

ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

“ 1

N2

››u1››2
2
,

where the last relation is Parseval’s identity.
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A basic approximation estimate, II

}u ´ PNu}22 “
ÿ

|k|°N

|puk|2 ,

puk “ ´ i

k

pu1
k.

This very basic estimate for Fourier series coefficients implies:

}u ´ PNu}22 “
ÿ

|k|°N

1

|k|2
ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

§ 1

N2

ÿ

|k|°N

ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

§ 1

N2

ÿ

kP

ˇ̌
ˇ pu1

k

ˇ̌
ˇ
2

“ 1

N2

››u1››2
2
,

where the last relation is Parseval’s identity.

We have just proven the following:

Theorem
Suppose u, u

1 P L
2, and that up0q “ up2⇡q. Then,

}u ´ PNu}2 § 1

N
}u1}

L2
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Sobolev spaces

To generalize this result, some additional notation will be helpful.

Definition (Sobolev spaces)
Given s P 0 “ t0, 1, . . . , u, the (L

2
periodic) Sobolev space of functions is given by,

H
s

ppr0, 2⇡s; q :“  
f : r0, 2⇡s Ñ

ˇ̌
f

pkq P L
2pr0, 2⇡s; q for all 0 § k § s,

f
pkqp0q “ f

pkqp2⇡q for all 0 § k § s ´ 1
(

The norm on H
s

is defined as,

}u}2
Hs :“

sÿ

k“0

›››upkq
›››
2

2
.

Some specializations of interest:

– s “ 0 ùñ H
0 “ L

2

– s ° 0 ùñ continuous functions Ä H
s
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Sobolev spaces

To generalize this result, some additional notation will be helpful.

Definition (Sobolev spaces)
Given s P 0 “ t0, 1, . . . , u, the (L

2
periodic) Sobolev space of functions is given by,

H
s

ppr0, 2⇡s; q :“  
f : r0, 2⇡s Ñ

ˇ̌
f

pkq P L
2pr0, 2⇡s; q for all 0 § k § s,

f
pkqp0q “ f

pkqp2⇡q for all 0 § k § s ´ 1
(

The norm on H
s

is defined as,

}u}2
Hs :“

sÿ

k“0

›››upkq
›››
2

2
.

Some specializations of interest:

– s “ 0 ùñ H
0 “ L

2

– s ° 0 ùñ continuous functions Ä H
s

The parameter s encodes the “amount” of smoothness that functions have, and the

following inclusions hold:

H
r Ä H

s
, r ° s • 0.
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General approximation results

The language of Sobolev spaces is the standard language in which to technically describe

convergence rates of Fourier Series approximations.

Theorem
If u P H

s, then

}u ´ PNu}
L2 § N

´s}u}Hs

Note that s “ 1 is our previous result.

In terms of degrees of freedom, M , }u ´ PNu}
L2 À pM{2q´s}u}Hs , which is fantastic for

large s.
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General approximation results

The language of Sobolev spaces is the standard language in which to technically describe

convergence rates of Fourier Series approximations.

Theorem
If u P H

s, then

}u ´ PNu}
L2 § N

´s}u}Hs

Note that s “ 1 is our previous result.

In terms of degrees of freedom, M , }u ´ PNu}
L2 À pM{2q´s}u}Hs , which is fantastic for

large s.

Actually, something even stronger is true about Fourier approximation:

Theorem
If u P H

s, then for every 0 § r † s,

}u ´ PNu}Hr § N
´ps´rq}u}Hs .

This result demonstrates tradeoff between smoothness of the function versus the strength

of the norm under which convergence is sought.
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