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Finite difference methods for 1D

Recall: we have discussed finite difference methods for the ODE:

—u"(z) = f(x), xz e (0,1)
U(O) = go,
u(l) = g1

The scheme essentially boils down to,
—D+D_Uj=fj, jZl,...,N,
where,

fi = f(z), u; ~ u(z;), x; = jh.
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Finite difference methods for 1D

Recall: we have discussed finite difference methods for the ODE:

—u"(z) = f(x), xz e (0,1)
U(O) = go,
u(l) = g1.

The scheme essentially boils down to,

_D+D—uj:fj7 ]:177%/‘/[
where,
fi = f(z), u; ~ u(z;), x; = jh.

We established: M M
— The scheme amounts to solving an yx ;)( sparse linear system

— The scheme is second-order convergent
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Partial Differential Equations

The appropriate generalization of our 1D ODE problem is an elliptic equation. In
2D, we'll use the notation,

u=u(z,y), V = (5x,6y)T, Az&i—i—@;.

A. Narayan (U. Utah — Math/SCI) Math 6630: FD for stationary problems



Partial Differential Equations

The appropriate generalization of our 1D ODE problem is an elliptic equation. In
2D, we'll use the notation,

u=u(z,y), V = (0x,0,)", A =024 0,.
A fairly general form for a 2D linear elliptic equation is the following:
" V- (k(2,y)Vu) = [(,y), (z,) € (0,1)°
s l' lg, w(0,y) = go(y), u(l,y) = g1(y), y€[0,1]
h, u(z,0) = ho(z), u(z,1) = hi(z), z € [0, 1],

where k(x,y) is a symmetric matrix that is positive definite everywhere, i.e.,

v k(z,y)v >0, Y (z,y) € [0,1]°, ve R? v # 0.
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Partial Differential Equations

The appropriate generalization of our 1D ODE problem is an elliptic equation. In
2D, we'll use the notation,

u=u(z,y), V = (0x,0,)", A =024 0,.

A fairly general form for a 2D linear elliptic equation is the following:

-V (K’(xay)vu) = f(a:,y), (xvy) € (07 1)2
u(0,y) = go(y), u(l,y) = g1(y), y € [0,1]
u(x,0) = ho(x), u(z,1) = hi(z), x € [0, 1],

where k(x,y) is a symmetric matrix that is positive definite everywhere, i.e.,
v k(z,y)v >0, Y (z,y) € [0,1]°, ve R? v # 0.

Like the 1D case, this PDE models
— Spatially-dependent temperature u due to heat diffusion

— Kk encodes the heat diffusion, allowing heterogeneous, anisotropic heat
diffusion.

— This equation also arises in electrostatics, graviational modeling, fluid flow, ....
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Common Specializations

The general elliptic problem is more recognizable with certain simplifications:
If we take k = I, then we obtain Poisson’s equation:

—Au=f
If we further specialize to f = 0, we obtain Laplace’s equation:

—Au = 0.
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FD discretization
For simplicity, consider Poisson’'s equation:

—Au = f(xvy)v (xay) € (07 1)2
u(0,y) = g0(y), u(l,y) = g1(y), y € [0,1]
u(z,0) = ho(z), u(x,1) = hi(x), x € [0, 1],

We define a uniform, isotropic grid of mesh spacing h = 1/(M + 1) over [0, 1]°:
Uij = u(xiayj)v x; = ih, Yj :]ha

fori,7 =0,...,M + 1. The unknowns are u; ; fori,j =1,..., M.
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FD discretization
For simplicity, consider Poisson’'s equation:

—Au = f(xvy)v (xay) € (07 1)2
u(0,y) = g0(y), u(l,y) = g1(y), y € [0,1]
u(z,0) = ho(z), u(x,1) = hi(x), x € [0, 1],

We define a uniform, isotropic grid of mesh spacing h = 1/(M + 1) over [0, 1]°:
Uij = u(xiayj)v x; = ih, Yj :]ha

fori,7 =0,...,M + 1. The unknowns are u; ; fori,j =1,..., M.

An FD discretization proceeds in essentially the same way as before:

X X 1
Uoa(Zi,Y5) ~ Dy Doty = 75 (Uivrj — Ui + Uiz15),
1
Uyy (Ti,Yy5) & DI DY w; 5 = 73 (Witreg — 2uij + Uitj)
\

. . bt Y
with local truncation errors, J \

DﬁDfu(azi,yj) — um(a:i,yj) = Ch2u:c:cxw — O(h2)v
DI DY u(ws, y;) — uyy(Ti, y;) = ChQUyyyy = O(hQ)v

hence we expect second-order accuracy with this discretization.
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The scheme ,.S([\\Qu é?é - g HV\A“ZJ/E

d / \ a
The full scheme is then given by, W\ R

—Ui,j4+1
2 ..
—Ui—1,5 +t4ui;  —uit1,; =R fij, i, =1,..., M.

with the boundary conditions,

M¢1

uo,j = go(yj); upi = 91(Y;),
U0 = ho(&?i), ’UJZ',}/= hl (:Ur,,)
M¢

Note that above we approximate Aw with grid values on'a 5-point stencil. Hence
we are using a 5-point stencil approximation for the Laplacian.
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The scheme

The full scheme is then given by,
— Ui, +1
2 .
—Ui—1,5 +t4ui;  —uit1,; =R fij, i,j=1,..., M.

with the boundary conditions,

uo0,; = go(y;), u1,; = 91(y;),

Note that above we approximate Au with grid values on a 5-point stencil. Hence
we are using a 5-point stencil approximation for the Laplacian.

As one might expect, the above can again be written as a linear system:
?: M
Au = f, u = (ui,j)

1,g=1"

where }’ is a vector depending only on f and the boundary conditions.
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Computational considerations in 2D 1p: [\J

% M
A'u, = f, u = (ui,j)i,jzl ,
Unlike in 1D:
— A is not a tridiagonal (or pentadiagonal) matrix, but is still sparse

— The ordering of the unknowns (u; ;);;_, matters a considerable deal in

determining the sparsity pattern of A.
- Ais M? x M?, and u contains M?* degrees of freedom — much larger!

— There are no more simple “tricks” to invert A in O(M?) time, although
iterative methods can solve the problem in O(M?log M) time.
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Computational considerations in 2D

M
A'u, = f, u = (ui,j)i,jzl ,
Unlike in 1D:
— A is not a tridiagonal (or pentadiagonal) matrix, but is still sparse

— The ordering of the unknowns (u; ;);;_, matters a considerable deal in

determining the sparsity pattern of A.
- Ais M? x M?, and u contains M?* degrees of freedom — much larger!

— There are no more simple “tricks” to invert A in O(M?) time, although
iterative methods can solve the problem in O(M?log M) time.

However, some things are essentially the same:

— The scheme is second-order accurate (convergent) in h. (The LTE is
second-order, and the scheme is stable.)

— In 1D, scaling h by 1/2 attained a reduced error scaled by 1/4. Since scaling h
by 1/2 doubles the degrees of freedom, this is a superlinear (quadratic) payoff.

— In 2D, scaling h by 1/2 again attains a reduced error scaled by 1/4. But scaling
h by 1/2 quadruples the degrees of freedom, so this is only a linear payoff.
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To higher dimensions

Laplace's equation (indeed, generally any elliptic equation) is essentially the same in
an arbitrary number of dimensions d:

0*u 0*u
—Au = Au= —5 + -+ —5.
u = f, U o + -+ oc?
As expected, the same FD approach works, discretizing dimension-by-dimension.

The resulting Laplacian stencil has 2d + 1 points — the system matrix A is sparse,
with only 2d + 1 non-zero entries per row. ©

With a uniform, isotropic grid of mesh spacing h = 1/(M + 1), there are
M ~ (1/h)* degrees of freedom. ®
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To higher dimensions

Laplace's equation (indeed, generally any elliptic equation) is essentially the same in
an arbitrary number of dimensions d:

2 2

- 0x? oz’
As expected, the same FD approach works, discretizing dimension-by-dimension.

The resulting Laplacian stencil has 2d + 1 points — the system matrix A is sparse,
with only 2d + 1 non-zero entries per row. ©

With a uniform, isotropic grid of mesh spacing h = 1/(M + 1), there are
M ~ (1/h)* degrees of freedom. ®

Solving the linear system with iterative methods can be accomplished in slightly
superlinear time, O(dM®log M) time. ®

The scheme is still stable, and the LTE is second-order in h. ®
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To higher dimensions

Laplace's equation (indeed, generally any elliptic equation) is essentially the same in
an arbitrary number of dimensions d:

2 2

- 0x? oz’
As expected, the same FD approach works, discretizing dimension-by-dimension.

The cost vs. accuracy payoff is sublinear if d > 3. ®

In particular, h < h/2 requires 2% times more degrees of freedom, with an error
reduced to only 272 times the original amount.

More pedantically, the order of convergence, relative to the number of degrees of
freedom N = M9, is 2/d, i.e., the error scales like N—2/4,

This exponential attentuation of convergence is one manifestation of the curse of
dimensionality.
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Delaying the curse of dimensionality

At least in 2D, there is a “trick” that restores second-order convergence relative to
the degrees of freedom, i.e., has error that is fourth-order in h.
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Delaying the curse of dimensionality

At least in 2D, there is a “trick” that restores second-order convergence relative to
the degrees of freedom, i.e., has error that is fourth-order in h.

The idea is as follows: we know that the standard 5-point stencil Laplacian
approximation satisfies,

1
Astij = 5 (—Uit1) — Uim1j — Ui j+1 — Ui j—1 + dui ;) = Au(xi,y;) + Ch? (Uzwws +

2
>~ ful Ch*(u +0Ch"
wl'X; J
The LTE term tzzox + uyyy;’ls not somet |n‘§ %@\/)how to co)mpute without
knowledge of u, but this expression is similar to the biharmonic operator:

A% = AAu = (07 + 02)(02 + 00 U = Ugwas + 2Usayy + Uyyyy-
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Delaying the curse of dimensionality

At least in 2D, there is a “trick” that restores second-order convergence relative to
the degrees of freedom, i.e., has error that is fourth-order in h.

The idea is as follows: we know that the standard 5-point stencil Laplacian
approximation satisfies,

1

Asugj = ] (—Uit1,j — Wim1,j — W1 — Uij—1 + s j) >~ Au(xi, y;) + Ch® (Uswas +

The LTE term uzzqea + Uyyyy IS Not something we know how to compute without
knowledge of u, but this expression is similar to the biharmonic operator:

A% = AAu = (07 + 02)(02 + 00 U = Ugwas + 2Usayy + Uyyyy-

The reason this is interesting is that

A
éu:l‘ 3 Au = AAu = AT,

and we know f, so in principle can compute Af.

l.e., can we ‘“change” the LTE expression to resemble A%u?
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The 9-point stencil, |

We will attain a biharmonic-like LTE via a combination of two 5-point stencils. The

first stencil is Asu; j, that we are already familiar with. F /

The second stencil is essentially the same, but is “rotated” by 45°: T
—Ui—1,5+1 —Ui4+1,54+1 -

X 2
Asug; = +4u; ~ 2h° Au(xi,yj), * ¢
—Uj—1,5—1 —Ujt+1,5—1

b )

The LTE for this approximation similarly contains fourth derivatives, but of a
different type.
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The 9-point stencil, |

We will attain a biharmonic-like LTE via a combination of two 5-point stencils.

first stencil is Asu; ;, that we are already familiar with.

The second stencil is essentially the same, but is “rotated” by 45°:

—Ui—1,5+1 —Ui+1,5+1

N 2

Asui,j = +dui, ~ 2k Au(zi, yj),
—Ui—1,5—1 —Ui+1,5—1

The LTE for this approximation similarly contains fourth derivatives, but of a
different type.

If we consider a combination of these approximations,
)\A5ui,j -+ (1 — )\)ﬁ5ui,j,

and choose \ = 1/3, then after some (painful) computation, we find,

1 2 1~
Au(zs,yj5) + Eh2 (A%u(zi,y;)) + O(h) ~ 35Uy + g AsUiy
This results in the 9-point stencil approximation:
1 —Ui—1,j+1 —4Uij+1  —Uit1,5+1
Au(wi,yj) X Agui,j = 6? —4u7;_1,j ZOui,j —4ui+1,j
—Ui—1,5—1 —Hij—1  —Uit1,5-1

The
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The 9-point stencil, Il

What have we accomplished? The LTE for the 9-point approximation is
h?/120%u + O(h*) = 7 [12Af + O(h*).
(0 ) B2 () 4¢
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The 9-point stencil, Il
What have we accomplished? The LTE for the 9-point approximation is
h?/12A%u + O(hY) = h?/12Af + O(h?).

For Laplace's equation (f = 0), then clearly Af = 0, hence, the FD scheme

Agu; j = %, 0

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th
order convergence in h, or second-order convergence in M?* ~ 1/h*. l.e., this
scheme achieves quadratic accuracy vs cost payoff.
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The 9-point stencil, Il

What have we accomplished? The LTE for the 9-point approximation is

h?/12A%u + O(hY) = h?/12Af + O(h?).

For Laplace's equation (f = 0), then clearly Af = 0, hence, the FD scheme
Aouij = fi

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th
order convergence in h, or second-order convergence in M?* ~ 1/h*. l.e., this
scheme achieves quadratic accuracy vs cost payoff.

For Poisson's equation (f # 0), then if we have the ability to compute F' := Af,
then the modified FD scheme,
h2
Rotij = fij + 15 Fij,
will be 4th order accurate in h. If Af is not explicitly computable, the same
accuracy is achievable via the approximation,

h2
Aouij = fi; + EA5fi,j-
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Deferred corrections

The previous idea is not really generalizable to other problems, as we must hope
that a serendipitous stencil that achieves a particular LTE is identifiable.

The method of deferred corrections seeks to make the above idea more practical:
for the Poisson problem, first we compute the solution & to

Astij = fij,
and second use u to compute approximations to the 5-point LTE truncation error

~ approximate h2/12(uwmwx +Uyyyy)

> i

Finally, we solve the corrected problem for wu:
Asuij = fij + Fi

With proper construction of F; ;, this scheme is again fourth-order accurate in h.
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