Final exam: Friday, Dec. Is
8-10am here

Opes. noteybrok/calculator
Study material: Hew problems
Thersiey class: no class
Oftre haws: $9: 30-10: 30$, WEB 9666
(also (2 $2-1 \mathrm{pm}$)
Project 2 due Thus day.

Math 5760/6890: Introduction to Mathematical Finance The Black-Scholes-Merton Model - European Call Options

See Petters and Dong 2016, Sections 8.1-8.2

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

December 5, 2023

The model assumptions
Before discussing details of the Black-Scholes-Merton model, we list some assumptions:

- No-arbitrage
- No transaction costs
- Easy availability of a risk-free security with a(n annual) rate $r>0$
- Liquidity of assets: fractional shares of any amount are permitted to be bought and sold
- Unlimited short selling permitted
- Existence of a risky asset without dividends

The model assumptions
Before discussing details of the Black-Scholes-Merton model, we list some assumptions:

- No-arbitrage
- No transaction costs
- Easy availability of a risk-free security with a(n annual) rate $r>0$
- Liquidity of assets: fractional shares of any amount are permitted to be bought and sold
- Unlimited short selling permitted
- Existence of a risky asset without dividends

The main question we'll provide analysis for: For a derivative with the risky asset as underlier, what should the price/premium of the option be?

We'll use notation that is fairly typical at this point:

- $t=0$ is today, $t=T>0$ is a fixed terminal time
- S_{t} is the (per-unit) underlier price at time t
- $f\left(S_{t}, t\right)$ is the (per-unit of S) price of a derivative with S_{t} as underlier
- Typically we know $f\left(S_{T}, T\right)$ (e.g., from a payoff diagram)
- We want to identify $f\left(S_{0}, 0\right)$, the price at time 0 (the premium)

The hedging portfolio
One basic idea is the following: we will form a portfolio that hedges against the value of the derivative.
I.e., suppose we hold one share of the derivative with price f - we seek to create a portfolio that hedges against the value of the derivative as it fluctuates with the underlier price.

So what is the change in f with respect to changes in S ?

$$
f=f(s, t) \quad \frac{\partial f}{\partial s} ?
$$

The hedging portfolio
One basic idea is the following: we will form a portfolio that hedges against the value of the derivative.
I.e., suppose we hold one share of the derivative with price f - we seek to create a portfolio that hedges against the value of the derivative as it fluctuates with the underlier price.

So what is the change in f with respect to changes in S ?
Mathematically, this is simply $\frac{\partial f}{\partial S}$, and so the infinitesimal change in the derivative value is $\frac{\partial f}{\partial S} \mathrm{~d} S$.

Hence, we can hedge against f by purchasing shares in S :

$$
\mathrm{d} f=\frac{\partial f}{\partial S} \mathrm{~d} S
$$

The hedging portfolio
One basic idea is the following: we will form a portfolio that hedges against the value of the derivative.
I.e., suppose we hold one share of the derivative with price f - we seek to create a portfolio that hedges against the value of the derivative as it fluctuates with the underlier price.

So what is the change in f with respect to changes in S ?
Mathematically, this is simply $\frac{\partial f}{\partial S}$, and so the infinitesimal change in the derivative value is $\frac{\partial f}{\partial S} \mathrm{~d} S$.

Hence, we can hedge against f by purchasing shares in S :

$$
\mathrm{d} f=\frac{\partial f}{\partial S} \mathrm{~d} S
$$

The idea here: The change in value of f can be offset by holding $\frac{\partial f}{\partial S}$ shares of S.
Therefore, let's create a portfolio P that shorts one unit of the option, and an appropriate number of shares of S to hedge:

$$
\mathrm{d} P=-\mathrm{d} f+\frac{\partial f}{\partial S} \mathrm{~d} S
$$

i.e.,

$$
P=-f+\frac{\partial f}{\partial S} S
$$

Delta hedging

The portfolio construction strategy we've just described is called (instantaneous) delta-hedging.

- We hedge according to the "delta", $\frac{\partial f}{\partial S}$, of the derivative.
- This requires instantaneous buying/selling of S.

$$
\mathrm{d} P=-\mathrm{d} f+\frac{\partial f}{\partial S} \mathrm{~d} S .
$$

Itô processes

$$
\mathrm{d} P=-\mathrm{d} f+\frac{\partial f}{\partial S} \mathrm{~d} S .
$$

$$
f=f\left(S_{t}, t\right)
$$

$$
\mathrm{d} P=-\mathrm{d} f+\frac{\partial f}{\partial S} \mathrm{~d} S .
$$

Part of the Black-Scholes-Merton modeling assumption is that the underlier evolves according to a geometric Brownian motion:

$$
\mathrm{d} S=\mu S \mathrm{~d} t+\sigma S \mathrm{~d} B, \quad S(0)=S_{0}
$$

where B is a standard Brownian motion, and (μ, σ) are the continuous-time drift and volatility, respectively.

$$
\begin{aligned}
f= & f\left(S_{z}, t\right) \quad d S=\mu d t+\sigma d B_{t} \\
d f \sim & d t\left[\frac{\partial f}{\partial t}+\frac{\partial f}{\partial S} d s+\frac{1}{2} \frac{\partial^{2} f}{\partial s^{2}} \sigma^{2}\right] \\
& d d B_{t}\left[\frac{\partial f}{\partial S} \sigma\right]
\end{aligned}
$$

$$
\mathrm{d} P=-\mathrm{d} f+\frac{\partial f}{\partial S} \mathrm{~d} S .
$$

Part of the Black-Scholes-Merton modeling assumption is that the underlier evolves according to a geometric Brownian motion:

$$
\mathrm{d} S=\mu S \mathrm{~d} t+\sigma S \mathrm{~d} B, \quad S(0)=S_{0},
$$

where B is a standard Brownian motion, and (μ, σ) are the continuous-time drift and volatility, respectively.

Now recall Itô's Lemma: a function of an Itô process is another Itô process, and its corresponding SDE can be written as functions of the original SDE.

Applying this to $f\left(S_{t}, t\right)$:

$$
\mathrm{d} f=\left(\frac{\partial f}{\partial t}+\frac{\partial f}{\partial S} \mu S+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}\right) \mathrm{d} t+\sigma S \frac{\partial f}{\partial S} \mathrm{~d} B
$$

The delta-hedge portfolio
Putting this all together, we have the following evolution law for the delta-hedge portfolio:

$$
\mathrm{d} P=-\left(\frac{\partial f}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}\right) \mathrm{d} t
$$

i.e., this portfolio is deterministic, and hence riskless.

The delta-hedge portfolio
Putting this all together, we have the following evolution law for the delta-hedge portfolio:

$$
\mathrm{d} P=-\left(\frac{\partial f}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}\right) \mathrm{d} t
$$

i.e., this portfolio is deterministic, and hence riskless.

In a no-arbitrage market, the only way this portfolio is an efficient one is if it evolves according to the risk-free security:

$$
\mathrm{d} P=r P \mathrm{~d} t . \quad-P(t) \sim e^{r t}
$$

The delta-hedge portfolio
Putting this all together, we have the following evolution law for the delta-hedge portfolio:

$$
\mathrm{d} P=-\left(\frac{\partial f}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}\right) \mathrm{d} t
$$

i.e., this portfolio is deterministic, and hence riskless.

In a no-arbitrage market, the only way this portfolio is an efficient one is if it evolves according to the risk-free security:

$$
\mathrm{d} P=r P \mathrm{~d} t .
$$

Then recalling our formula for P

$$
-\left(\frac{\partial f}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}\right) \mathrm{d} t=\mathrm{d} P=r P \mathrm{~d} t=r\left(-f+\frac{\partial f}{\partial S} S\right) \mathrm{d} t
$$

i.e.,

$$
\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0
$$

The Black-Scholes equation

The PDE we have just derived is called the Black-Scholes (partial differential) equation:

$$
\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0
$$

It is typically supplemented with boundary and terminal conditions:

$$
\begin{gathered}
f(S, T)=\text { payoff function } \\
f(0, t)=0 \text { for all time } \\
f(x, t) \text { for large } x
\end{gathered}
$$

The PDE we have just derived is called the Black-Scholes (partial differential) equation:

$$
\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0
$$

It is typically supplemented with boundary and terminal conditions:

$$
\begin{aligned}
& f(S, T)=\text { payoff function } \\
& f(0, t)=0 \text { for all time } \\
& f(x, t) \text { for large } x
\end{aligned}
$$

The goal is to identify/compute a solution to the Black-Scholes equation, i.e., $f(s, 0)$.
For sufficiently complicated examples (e.g., non-constant μ, σ), this equation is numerically solved.

However, in simplified cases, we can compute exact solutions.

European options

For a European call option, the payoff is,

$$
f(s, T)=\max \{s-K, 0\} .
$$

Our asymptotic condition is,

$$
f(s, t) \rightarrow s-K, \quad \text { as } s \rightarrow \infty .
$$

European options

For a European call option, the payoff is,

$$
f(s, T)=\max \{s-K, 0\} .
$$

Our asymptotic condition is,

$$
f(s, t) \rightarrow s-K, \quad \text { as } s \rightarrow \infty .
$$

We can solve this equation analytically (though we'll omit most steps). The basic ideas:

- Reverse time: $\tau=T-t$.
- Discount the price: $u(s, \tau)=e^{r \tau} f(s, \tau)$
- Transform space: $x \sim \log s+c \tau$

European options

For a European call option, the payoff is,

$$
f(s, T)=\max \{s-K, 0\} .
$$

Our asymptotic condition is,

$$
f(s, t) \rightarrow s-K, \quad \text { as } s \rightarrow \infty .
$$

We can solve this equation analytically (though we'll omit most steps). The basic ideas:

- Reverse time: $\tau=T-t$.
- Discount the price: $u(s, \tau)=e^{r \tau} f(s, \tau)$
- Transform space: $x \sim \log s+c \tau$

These transformations make the PDE a rather familiar one:

$$
\frac{\partial u}{\partial \tau}=\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

$$
u(x, 0)=K\left(e^{x}-1\right) H(x)
$$

with $H(x)$ the Heaviside function.
This can be solved with somewhat standard methods, e.g., using the heat kernel:

$$
u(x, \tau)=\int_{-\infty}^{\infty} u_{0}(y) G(x, y, \tau) \mathrm{d} y, \quad G(x, y, \tau)=\frac{1}{\sigma \sqrt{2 \pi \tau}} \exp \left(\frac{-(x-y)^{2}}{2 \sigma^{2} \tau}\right) .
$$

Once $u(x, T)$ is computed, we have $f(s, 0)$.

European call

The solution for the European call is:

$$
\begin{array}{lc}
f(s, t)=\Phi\left(d_{+}\right) s-\Phi\left(d_{-}\right) K e^{-r(T-t)}, & \leftarrow \text { Black }- \text { Sckoles } \\
\text { the standard normal: } & \text { formula }
\end{array}
$$

where $\Phi(\cdot)$ is the CDF of the standard normal:

$$
\Phi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x,
$$

and $d_{ \pm}$are given by,

$$
\begin{aligned}
& d_{+}=\frac{1}{\sigma \sqrt{T-t}}\left(\log \left(\frac{s}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)\right), \\
& d_{-}=d_{+}-\sigma \sqrt{T-t}
\end{aligned}
$$

Note that this allows us to price the derivative for any $t \in[0, T]$.

Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition. Springer. ISBN: 978-1-4939-3783-7.

