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Brownian motion and stochastic integration L22-502

We have introduced the stochastic process Brownian motion, B = B(t).
— P(B(t) =0) = 1
— B is continuous with probability 1

— The n sequential increments formed by any choice of n + 1 ordered time points
t1,...,tn4+1 are mutually independent

— Forany 0 < s <t < o, then B(t) — B(s) ~ N(0,t — s).
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Brownian motion and stochastic integration L22-502

We have introduced the stochastic process Brownian motion, B = B(t).
— P(B(t) =0) = 1
— B is continuous with probability 1

— The n sequential increments formed by any choice of n + 1 ordered time points
t1,...,tn4+1 are mutually independent

— Forany 0 < s <t < o0, then B(t) — B(s) ~ N(0,t — s).
Using this, we have defined the 1t integral:

T n
|, F@aB. = tim 3 5B - Blt-), L
j=1
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Brownian motion and stochastic integration L22-502

We have introduced the stochastic process Brownian motion, B = B(t).
— P(B(t)=0) =1
— B is continuous with probability 1

— The n sequential increments formed by any choice of n + 1 ordered time points
t1,...,tn4+1 are mutually independent

— Forany 0 < s <t < o0, then B(t) — B(s) ~ N(0,t — s).
Using this, we have defined the 1t integral:

T n
|, F@aB. = tim 3 5B - Blt-), t
j=1

The It6 integral can be used to notationally define differentials and (stochastic)
differential equations:

T dy
X7 = JO f(t)dBt = dX; = f(t)dBt de .‘?\C(‘t)
It is this differential notation that we will mostly exercise moving forward.

L (: f dy = Fb) T7 Mg FO8)- Pl
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Some examples 1L 22-503

Here are some examples of SDE's:

— Let St = ut + o B¢, where B; is a standard Brownian motion. To determine an SDE,
note that by definition:

n T
Bt = ?}LITI(EIO Bt = ii{gloj;l (Bj — Bj—l) = J;) 1dBt,
l.e.,
dB: = dBs.

Combining this with linearity of the It6 integral and our usual understanding of the
deterministic differential, we conclude:

T T
St = f pdt + J od B — dSt = pdt + od Bs.
0 0
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Some examples 1L 22-503

Here are some examples of SDE's:

— Let St = ut + o B¢, where B; is a standard Brownian motion. To determine an SDE,
note that by definition:

n T
Bt = ?}LITI(EIO Bt = ii{gloj;l (Bj — Bj—l) = J;) 1dBt,
l.e.,
dB: = dBs.

Combining this with linearity of the It6 integral and our usual understanding of the
deterministic differential, we conclude:

T T
St = f pdt + J od B — dSt = pdt + od Bs.
0 0

— From last time:

d(B?) = dt 4+ 2B;d By
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1td processes and diffusion L22-504

Stochastic processes that are driven by Brownian motion have special terminology:

Suppose X is a stochastic process satisfying,
dX; = [L(Xt, t)dt + O'(Xt, t)dBt,
where u(-,-) and o(-, ) are deterministic functions (“drift” and “volatility”, respectively).

Then X3 is called an [té process.
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1td processes and diffusion L22-504

Stochastic processes that are driven by Brownian motion have special terminology:
Suppose X is a stochastic process satisfying,

dX: = pu(Xe, t)dt + o( Xy, t)d By,
where u(-,-) and o(-, ) are deterministic functions (“drift” and “volatility”, respectively).

Then X3 is called an [té process.

If w =p(-) and o = o(+), i.e.,
dX; = /L(Xt)dt + O'(Xt)dBt,
then Xy is an [té diffusion.
' 7 leall: =
Uy #e dlfome D Realt gR Y e b
¥ty
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Change of variables L22-505

A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

dx

R : ¢
» p(zx;t)

What differential equation does y := f(x,t) satisfy?

%3 -:‘l’é (:()(,f)": %[m/ ¢ %(x&)'%’f

C{Mu\n‘[[,
X
= aF 1"/,1 &x
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Change of variables L22-505

A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

dx

R : ¢
» p(zx;t)

What differential equation does y := f(x,t) satisfy?

Through a simple application of the chain rule, we obtain:

dy _of  of

E_ﬁt—i_&:c (t)
_of  of
_8t+ u(}lt)
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Change of variables L22-505

A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

dx

R : ¢
g p(zx;t)

What differential equation does y := f(x,t) satisfy?

Through a simple application of the chain rule, we obtain:

dy of of /
— = — 4+ —x'(t
dt ot T 8:cx (%)

_of a9f .
=t amu(u,t)

If X is a trivial 1t6 process:
dXt = M(Xt,t)dt, (O‘ = O)
then the standard chain rule would apply for Y: = f(X¢,t):

dY: = (a—f(Xt,t) + /L(Xt,t)ﬁ(Xt,t)> dt.
ot ox

But this does not apply for o # 0.
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1t6's Lemma L22-506

The corresponding chain rule-like result that includes the volatility is the following.

Lemma (Itd6's Lemma)

Let X+ be an Ité process:
dX; = /L(Xt, t)dt + O'(Xt, t)dBt.

Define Yy = f(X¢,t). Then Y is an Ité process, and satisfies the SDE,

0.2 ¢ 2
dv; :(aa—{(Xt,t)+u(Xt,t)g—£(Xt,t)+ ()2( 2 Zx‘;c(Xt,t)) dt
-+ O‘(Xt, t)g_i(Xt’ t)dBt
Eg." igtzwe (/712(7, O\:l) = d}, = LL-Z J-&+l'28Ec!££
- 2
= ) =di +28, d8,
Y= (8, ¢) =6,
1€ %, _9:_@ =7
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1t6's Lemma L22-506

The corresponding chain rule-like result that includes the volatility is the following.

Lemma (Itd6's Lemma)

Let X+ be an Ité process:
dX; = ,u(Xt, t)dt + O'(Xt, t)dBt.
Define Yy = f(X¢,t). Then Y is an Ité process, and satisfies the SDE,

o (X¢,1) 52f
2 O0x?

av; — (‘Z—{(Xt,w (X)L (Xe 1) + <Xt,t>) t

1%
+ O‘(Xt, t) @_i (Xt, t)dBt

More compactly: if we drop the explicit notational dependence on ¢, X, and use
ft, fz, fzx to denote partial derivatives then:

dY = puydt + oydB,

with

2
o
NY:ft‘Flfdfa:‘F?f:coca oy = 0fz.
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Some intuition L22-S07

Most of I1t6's lemma is immediately motivated from deterministic calculus.

l.e., from the standard chain rule on deterministic quantities:

dy
y(t) = fx(t),1), = =+ —u(ui),
we already expect that:

dY; = fedt + fo (udt + odB)
= (ft + pfz)dt + o fzdB.

. s . .. 2
But in 1té's lemma, there is an additional %fmdt term.
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Some intuition L22-S07

Most of I1t6's lemma is immediately motivated from deterministic calculus.

l.e., from the standard chain rule on deterministic quantities:

dy
y(t) = fx(t),1), = =+ —u(ui),
we already expect that:

dY; = fedt + fo (udt + odB)
= (ft + pfz)dt + o fzdB.

But in 1té's lemma, there is an additional %Qfxa:dt term.
This term arises because [B]: = t, or (dB;)? = dt:
fIX(t+ At),t+ At) — f(X(t),t) ~fe At + (X (t + At) — X(t)) f«
+ %(X(t + AL = X) fan + ..

The first-order derivatives yield what we already expect. The second order term yields,

1 1 1 1
5(X(t + At) — X)? fow ~ 5 (pdt + 0dBt)? foz ~ 502]%[,,93((11975)2 +... = 502fmdt + ...

A. Narayan (U. Utah — Math/SCI) Math 5760/6890: Stochastic Differential Equations



Some utility of Itd's Lemma L22-508

Ité's Lemma is extremely useful in general, but some utility that is particularly useful for us
is the ability to identify SDEs for processes.

Example

Recall that /4';[ o= Bé
d(B7) = dt + 2B:d By

Construct an SDE for e(Bt2)+t, and identify the drift and volatility functions.

(o= p*H = QB = oE =,

M0 o " +
e eml = Cw,) Ifl B} 6>(e
o
W (Foe phe 00+ (b
o —
My 7
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Geometric Brownian Motion L22-509

Back to securities, we assumed availability of continuous-time drift and volatility (u, o).

We've seen that a reasonable stochastic model for the log-return L(t) is,
L = ut + oBt,

where B; is a standard Brownian motion.
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Geometric Brownian Motion L22-509

Back to securities, we assumed availability of continuous-time drift and volatility (u, o).
We've seen that a reasonable stochastic model for the log-return L(t) is,
Li = ut + 0By,

where B; is a standard Brownian motion.

We then expect that a reasonable model for the security price is,
St = S()eLt = Soe'ut_'_JBt.

What kind of SDE does S; satisfy? ‘{S'é - 7
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Geometric Brownian Motion L22-509

Back to securities, we assumed availability of continuous-time drift and volatility (u, o).
We've seen that a reasonable stochastic model for the log-return L(t) is,

L = ut + oBt,

where B; is a standard Brownian motion.

We then expect that a reasonable model for the security price is,
St = SoeLt = Soe'wH_aBt.

What kind of SDE does S; satisfy?

Definition

Let u, 0 be constants, o > 0. With B; a standard Brownian motion, suppose S; is a
stochastic process defined by,

dSt = uSidt + 0 S¢d By, S(t = O) = Sp.

Then S; is a Geometric Brownian Motion with drift and volatility (u, o).

A. Narayan (U. Utah — Math/SCI) Math 5760/6890: Stochastic Differential Equations



Geometric Brownian Motion L22-509

Back to securities, we assumed availability of continuous-time drift and volatility (u, o).

We've seen that a reasonable stochastic model for the log-return L(t) is,
Li = ut + 0By,
where B; is a standard Brownian motion.
We then expect that a reasonable model for the security price is,
St = Spelt = Spert Bt
What kind of SDE does S; satisfy?
Definition

Let u, 0 be constants, o > 0. With B; a standard Brownian motion, suppose S; is a
stochastic process defined by,

dSt = uSidt + 0 S¢d By, S(t = O) = Sp.
Then S; is a Geometric Brownian Motion with drift and volatility (u, o).

Note that S: as defined above corresponds to the process,

S; = 506(#—02/2)t+03t),

which is a lognormal ((,u — %2> t, 0275) random variable.
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The gist and summary L22-510

We set out to construct a continuous-time analogue of the binomial tree model for
securities.

— Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,

dSt = ,LLStdt + O'StdBt, «f— §(0)’:§0

is our model.
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The gist and summary L22-510

We set out to construct a continuous-time analogue of the binomial tree model for
securities.

— Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,
dS; = ,LLStdt + 0Std By,

is our model.

— This is a stochastic model for an asset: given historical data, we can simulate future
trajectories of stock prices by numerically discretizing this model.
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The gist and summary L22-510

We set out to construct a continuous-time analogue of the binomial tree model for
securities.

— Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,
dS; = ,LLStdt + 0Std By,

is our model.

— This is a stochastic model for an asset: given historical data, we can simulate future
trajectories of stock prices by numerically discretizing this model.

— This model can be viewed as the continuous-time limit of the CRR model for S,,: the
price of S;, in the CRR model evolves according to geometric increments. Geometric
Brownian motion follows a similar principle (as the SDE reveals).
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The gist and summary L22-510

We set out to construct a continuous-time analogue of the binomial tree model for
securities.

— Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,
dS; = ,LLStdt + 0Std By,

is our model.

— This is a stochastic model for an asset: given historical data, we can simulate future
trajectories of stock prices by numerically discretizing this model.

— This model can be viewed as the continuous-time limit of the CRR model for S,,: the
price of S;, in the CRR model evolves according to geometric increments. Geometric
Brownian motion follows a similar principle (as the SDE reveals).

— One nice thing about the SDE formulation: it's ok if i or o vary with time, or even
depend on S¢. This model is flexible.
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Simulating SDEs L22-511

How does one numerically simulate SDE paths? It's not quite the same as coin flips. The
model is,

dsS; = /,LStdt + 0Std By, S(t = O) = Sp.
Given an equispaced set of times,
tj = hj, h > 0,

and for notational ease setting Stj = S, then how do we generate a trajectory?
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Simulating SDEs L22-511

How does one numerically simulate SDE paths? It's not quite the same as coin flips. The
model is,

dsS; = /,LStdt + 0Std By, S(t = O) = Sp.
Given an equispaced set of times,
tj = hy, h > 0,

and for notational ease setting Stj = S, then how do we generate a trajectory? The
discrete differential form of the SDE provides one possible simple answer:

Sj+1 — 85 = wSj(tjy1 —t5) + 055(Bjy1 — Bj).
'\/\_/ \/\/

" &7\””)4/“ WD'#M
MAemen/
N h)
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Simulating SDEs L22-511

How does one numerically simulate SDE paths? It's not quite the same as coin flips. The
model is,

dsS; = uStdt + 0Std By, S(t = O) = Sp.
Given an equispaced set of times,
tj = hj, h > 0,

and for notational ease setting Stj = S, then how do we generate a trajectory? The
discrete differential form of the SDE provides one possible simple answer:

Sj+1 — 85 = wSj(tjy1 — t5) + 05;(Bjy1 — Bj).
Butt;41 —t; = h, and Bj;1 — B; ~ N(0, h), so this scheme can be written as,
Sit1=5; + phS; + 0S;vVhZ, Z ~ N(0,1),
with Sg given and fixed.

This scheme is called the Euler-Maruyama method.
(This is exactly how Brownian motion figures were generated on previous slides.)
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A digression on SDEs L22-512

We won't really use SDE’s in more complicated situations than we've covered.

But SDEs are enormously useful in various non-finance contexts.
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A digression on SDEs L22-512

We won't really use SDE’s in more complicated situations than we've covered.
But SDEs are enormously useful in various non-finance contexts.
Here is one example: Abstractly, an SDE allows us to determine a target behavior through

the drift, and the volatility provides a mechanism to generate randomness around the
target.

Around the target is key: of course we can generate completely random things that might
not make sense.
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A digression on SDEs L22-512

We won't really use SDE’s in more complicated situations than we've covered.
But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through
the drift, and the volatility provides a mechanism to generate randomness around the
target.

Around the target is key: of course we can generate completely random things that might
not make sense.

Suppose we tried to generate random images of objects or scenarios: Abstractly, what this
means is that there should be a pipeline that accomplishes:

“A giraffe completing mathematical —  “Drift’' ux —  Generate SDE trajectories
finance homework in the rain”

That should generate an output like:
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SDEs for images L 22-513

Or even more abstractly, the input “target” can be an image itself:
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Diffusion maps L22-514

This methodology is called creating a diffusion map, although there are many variants.

And this is exactly what certain generative Al software does, in particular image-based Al
generators.

SDEs are a large part of the mathematics that underlie these deep learning-based models.
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Diffusion maps L22-514

This methodology is called creating a diffusion map, although there are many variants.

And this is exactly what certain generative Al software does, in particular image-based Al
generators.

SDEs are a large part of the mathematics that underlie these deep learning-based models.

The key, very difficult problem is a proper learning of the drift: one has to hit the right
target in image space.
(Of course one should also add “noise” in the right ways.)

This is why most diffusion-based generative Al models require lots of data: training the
drift and volatility so that the SDE evolution generates meanginful outputs is very hard.
(The figures on the previous slides were generated using DALL-E.)
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