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L22-S02Brownian motion and stochastic integration

We have introduced the stochastic process Brownian motion, Bt “ Bptq.
– P pBptq “ 0q “ 1

– B is continuous with probability 1
– The n sequential increments formed by any choice of n ` 1 ordered time points

t1, . . . , tn`1 are mutually independent
– For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.

Using this, we have defined the Itô integral:
ª T

0
fptqdBt “ lim

nÒ8

nÿ

j“1

fptj´1qpBptjq ´ Bptj´1qq, tj “ jT

n
.

The Itô integral can be used to notationally define differentials and (stochastic)
differential equations:

XT :“
ª T

0
fptqdBt ñ dXt “ fptqdBt.

It is this differential notation that we will mostly exercise moving forward.
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L22-S03Some examples

Here are some examples of SDE’s:
– Let St “ µt ` �Bt, where Bt is a standard Brownian motion. To determine an SDE,

note that by definition:

Bt “ lim
nÒ8

Bt “ lim
nÒ8

nÿ

j“1

pBj ´ Bj´1q “
ª T

0
1dBt,

i.e.,

dBt “ dBt.

Combining this with linearity of the Itô integral and our usual understanding of the
deterministic differential, we conclude:

ST “
ª T

0
µdt `

ª T

0
�dBt ùñ dSt “ µdt ` �dBt.

– From last time:

dpB2
t q “ dt ` 2BtdBt
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L22-S04Itô processes and diffusion

Stochastic processes that are driven by Brownian motion have special terminology:

Suppose Xt is a stochastic process satisfying,

dXt “ µpXt, tqdt ` �pXt, tqdBt,

where µp¨, ¨q and �p¨, ¨q are deterministic functions (“drift” and “volatility”, respectively).

Then Xt is called an Itô process.

If µ “ µp¨q and � “ �p¨q, i.e.,

dXt “ µpXtqdt ` �pXtqdBt,

then Xt is an Itô diffusion.
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L22-S05Change of variables

A particularly useful tool is a change-of-variable result: Suppose a function satisfies,

dx

dt
“ µpx; tq

What differential equation does y :“ fpx, tq satisfy?

Through a simple application of the chain rule, we obtain:

dy

dt
“ Bf

Bt ` Bf
Bxx1ptq

“ Bf
Bt ` Bf

Bxµpu; tq

If Xt is a trivial Itô process:

dXt “ µpXt, tqdt, p� ” 0q

then the standard chain rule would apply for Yt “ fpXt, tq:

dYt “
ˆ Bf

Bt pXt, tq ` µpXt, tq Bf
Bx pXt, tq

˙
dt.

But this does not apply for � ‰ 0.
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L22-S06Itô’s Lemma
The corresponding chain rule-like result that includes the volatility is the following.

Lemma (Itô’s Lemma)
Let Xt be an Itô process:

dXt “ µpXt, tqdt ` �pXt, tqdBt.

Define Yt “ fpXt, tq. Then Yt is an Itô process, and satisfies the SDE,

dYt “
ˆ Bf

Bt pXt, tq ` µpXt, tq Bf
Bx pXt, tq ` �2pXt, tq

2

B2f

Bx2
pXt, tq

˙
dt

` �pXt, tq Bf
Bx pXt, tqdBt

More compactly: if we drop the explicit notational dependence on t,Xt, and use
ft, fx, fxx to denote partial derivatives then:

dY “ µY dt ` �Y dB,

with

µY “ ft ` µfx ` �2

2
fxx, �Y “ �fx.
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L22-S07Some intuition
Most of Itô’s lemma is immediately motivated from deterministic calculus.

I.e., from the standard chain rule on deterministic quantities:

yptq “ fpxptq, tq, ùñ dy

dt
“ Bf

Bt ` Bf
Bxµpu; tq,

we already expect that:

dYt “ ftdt ` fx pµdt ` �dBq
“ pft ` µfxq dt ` �fxdB.

But in Itô’s lemma, there is an additional �2

2 fxxdt term.

This term arises because rBst “ t, or pdBtq2 “ dt:

fpXpt ` �tq, t ` �tq ´ fpXptq, tq «ft�t ` pXpt ` �tq ´ Xptqqfx
` 1

2
pXpt ` �tq ´ Xq2fxx ` . . .

The first-order derivatives yield what we already expect. The second order term yields,

1

2
pXpt ` �tq ´ Xq2fxx „ 1

2
pµdt ` �dBtq2 fxx „ 1

2
�2fxxpdBtq2 ` . . . “ 1

2
�2fxxdt ` . . .
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L22-S08Some utility of Itô’s Lemma

Itô’s Lemma is extremely useful in general, but some utility that is particularly useful for us
is the ability to identify SDEs for processes.

Example
Recall that

dpB2
t q “ dt ` 2BtdBt

Construct an SDE for epB2
t q`t, and identify the drift and volatility functions.
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L22-S09Geometric Brownian Motion
Back to securities, we assumed availability of continuous-time drift and volatility pµ,�q.

We’ve seen that a reasonable stochastic model for the log-return Lptq is,

Lt “ µt ` �Bt,

where Bt is a standard Brownian motion.

We then expect that a reasonable model for the security price is,

St “ S0e
Lt “ S0e

µt`�Bt .

What kind of SDE does St satisfy?

Definition
Let µ,� be constants, � ° 0. With Bt a standard Brownian motion, suppose St is a
stochastic process defined by,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Then St is a Geometric Brownian Motion with drift and volatility pµ,�q.
Note that St as defined above corresponds to the process,

St “ S0e
pµ´�2{2qt`�Btq,

which is a lognormal
´´

µ ´ �2

2

¯
t,�2t

¯
random variable.
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L22-S10The gist and summary

We set out to construct a continuous-time analogue of the binomial tree model for
securities.

– Geometric Brownian motion, i.e., a stochastic process satisfying an SDE of the form,

dSt “ µStdt ` �StdBt,

is our model.
– This is a stochastic model for an asset: given historical data, we can simulate future

trajectories of stock prices by numerically discretizing this model.
– This model can be viewed as the continuous-time limit of the CRR model for Sn: the

price of Sn in the CRR model evolves according to geometric increments. Geometric
Brownian motion follows a similar principle (as the SDE reveals).

– One nice thing about the SDE formulation: it’s ok if µ or � vary with time, or even
depend on St. This model is flexible.
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L22-S11Simulating SDEs

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The
model is,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Given an equispaced set of times,

tj “ hj, h ° 0,

and for notational ease setting Stj “ Sj , then how do we generate a trajectory? The
discrete differential form of the SDE provides one possible simple answer:

Sj`1 ´ Sj “ µSjptj`1 ´ tjq ` �SjpBj`1 ´ Bjq.

But tj`1 ´ tj “ h, and Bj`1 ´ Bj „ N p0, hq, so this scheme can be written as,

Sj`1 “ Sj ` µhSj ` �Sj

?
hZ, Z „ N p0, 1q,

with S0 given and fixed.

This scheme is called the Euler-Maruyama method.
(This is exactly how Brownian motion figures were generated on previous slides.)

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Stochastic Differential Equations



L22-S11Simulating SDEs

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The
model is,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Given an equispaced set of times,

tj “ hj, h ° 0,

and for notational ease setting Stj “ Sj , then how do we generate a trajectory? The
discrete differential form of the SDE provides one possible simple answer:

Sj`1 ´ Sj “ µSjptj`1 ´ tjq ` �SjpBj`1 ´ Bjq.

But tj`1 ´ tj “ h, and Bj`1 ´ Bj „ N p0, hq, so this scheme can be written as,

Sj`1 “ Sj ` µhSj ` �Sj

?
hZ, Z „ N p0, 1q,

with S0 given and fixed.

This scheme is called the Euler-Maruyama method.
(This is exactly how Brownian motion figures were generated on previous slides.)

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Stochastic Differential Equations



L22-S11Simulating SDEs

How does one numerically simulate SDE paths? It’s not quite the same as coin flips. The
model is,

dSt “ µStdt ` �StdBt, Spt “ 0q “ S0.

Given an equispaced set of times,

tj “ hj, h ° 0,

and for notational ease setting Stj “ Sj , then how do we generate a trajectory? The
discrete differential form of the SDE provides one possible simple answer:

Sj`1 ´ Sj “ µSjptj`1 ´ tjq ` �SjpBj`1 ´ Bjq.

But tj`1 ´ tj “ h, and Bj`1 ´ Bj „ N p0, hq, so this scheme can be written as,

Sj`1 “ Sj ` µhSj ` �Sj

?
hZ, Z „ N p0, 1q,

with S0 given and fixed.

This scheme is called the Euler-Maruyama method.
(This is exactly how Brownian motion figures were generated on previous slides.)

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Stochastic Differential Equations



L22-S12A digression on SDEs
We won’t really use SDE’s in more complicated situations than we’ve covered.

But SDEs are enormously useful in various non-finance contexts.

Here is one example: Abstractly, an SDE allows us to determine a target behavior through
the drift, and the volatility provides a mechanism to generate randomness around the
target.

Around the target is key: of course we can generate completely random things that might
not make sense.

Suppose we tried to generate random images of objects or scenarios: Abstractly, what this
means is that there should be a pipeline that accomplishes:

“A giraffe completing mathematical
finance homework in the rain”

Ñ “Drift” µ Ñ Generate SDE trajectories

That should generate an output like:
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L22-S13SDEs for images
Or even more abstractly, the input “target” can be an image itself:

And the output could be SDE-based stochastic diffusions of the input:
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L22-S14Diffusion maps

This methodology is called creating a diffusion map, although there are many variants.

And this is exactly what certain generative AI software does, in particular image-based AI
generators.

SDEs are a large part of the mathematics that underlie these deep learning-based models.

The key, very difficult problem is a proper learning of the drift: one has to hit the right
target in image space.
(Of course one should also add “noise” in the right ways.)

This is why most diffusion-based generative AI models require lots of data: training the
drift and volatility so that the SDE evolution generates meanginful outputs is very hard.
(The figures on the previous slides were generated using DALL-E.)
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generators.

SDEs are a large part of the mathematics that underlie these deep learning-based models.

The key, very difficult problem is a proper learning of the drift: one has to hit the right
target in image space.
(Of course one should also add “noise” in the right ways.)

This is why most diffusion-based generative AI models require lots of data: training the
drift and volatility so that the SDE evolution generates meanginful outputs is very hard.
(The figures on the previous slides were generated using DALL-E.)
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