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L21-S02Brownian motion
We have introduced Brownian motion, a stochastic process Bptq having the properties:

– P pBptq “ 0q “ 1

– B is continuous with probability 1
– The n sequential increments formed by any choice of n ` 1 ordered time points

t1, . . . , tn`1 are mutually independent
– For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.
– With probability 1, the sample path Bp¨,!q is differentiable nowhere.
– For any interval I Ä r0,8q of finite length, with probability 1, the sample path Bp¨,!q

has infinite “variation" on I.
– B has Markovian structure: Fix s ° 0 and define Aptq :“ Bpt ` sq ´ Bpsq. Then Aptq

and Bptq have the same distribution, and in particular A is a standard Brownian
motion.

– Sample paths of Brownian motion are self-similar/fractals. In particular, for any c ° 0,
the process 1

cBpc2tq is a standard Brownian motion.
The first few of these are defining properties of Brownian motion, while the latter ones are
consequences of the definition.

Our next goal: Stochastic calculus.
The standard way this is introduced is first to discuss stochastic integration, followed by
concepts of stochastic differentiation.
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L21-S03Why stochastic calculus?
Calculus is the language of (instantaneous) change – modeling change is foundational in
many fields, including finance.

Recall that an annual interest rate r results in a time T “ 1 future value of an amount S0

according to

S1 “ S0

´
1 ` r

n

¯n
,

where interest is compounded n times over a single year.

One can also imagine using continuous compounding (taking n Ñ 8), which results in the
amount,

S1 “ S0e
r,

or for an arbitrary terminal time t ° 0:

St “ S0e
rt.

The more constructive way to view this result is as a differential equation:

S1ptq “ rSptq, Sp0q “ S0.

I.e., we can write this as a calculus/differential equations problem.
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L21-S04Why stochastic calculus
What use is calculus for this problem?

Suppose I wanted to know the future value of an asset at time T “ 1, where the interest
rate increases linearly from r to 2r over the r0, T s time interval.

With calculus, the formulation of this is easy:

S1ptq “ rp1 ` tqSptq, Sp0q “ S0.

And if we learn enough calculus, the solution is easy, too:

Sptq “ S0 exp

ˆ
rt ` rt2

2

˙
.

The same principles are true for our probabilistic valuation models:
– It rather technical to understand model dependence on complicated drift and volatility

for discrete-time models.
– Continuous time is a convenient standardization: it’s easy to specialize a

continuous-time model to discrete-time trading, but it’s harder to specialize a
discrete-time model to discrete-time with a different period.

– Calculus provides technical intuition: it’s much easier to understand behavior of
calculus models than it is to understand the corresponding behavior of discrete-time
models.

– The downside: stochastic calculus is much more technical and advanced than standard
calculus.
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L21-S05Quadratic variation
Our first step in stochastic calculus is integration, from which we will introduce dual
concepts of differentiation.

The rationale for this is practical: since Brownian motion is nowhere differentiable, we
cannot really hope to use standard notions of differentiation to understand the evolution of
Brownian motion.

Our first step in the direction of stochastic integration is to introduce quadratic variation.

Definition
Let Xptq and Y ptq be two stochastic processes. The quadratic covariation of Xt and Yt on
the interval r0, T s is the stochastic process given by,

rX,Y sT :“ lim
nÑ8

nÿ

j“1

pXj ´ Xj´1q pYj ´ Yj´1q , Xj :“ Xptjq “ X

ˆ
j
T

n

˙
.

The quadratic variation of X over the same interval is,

rXsT :“ rX,XsT .

There is a lot of use in understanding quadratic (co)variation, but for us the following
simple fact suffices: If B is a standard Brownian motion, then

rBsT “ T
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L21-S06A taste of differentials

The fact that

rB,BsT “ T

suggests some notation that we will use soon.

First, note that this is true for T very small, and this along with the Markovian property of
B suggsets that we have the approximation,

pBpt ` �tq ´ Bptqq2 « �t.

An immediately suggestive notation for the above statement in the limit of infinitesimal
�t is,

pdBq2 “ dt.

To emphasize that B depends on t, one typically uses a subscript:

pdBtq2 “ dt.

Note that for stochastic processes, subscript notation is not differentiation.
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L21-S07Stochastic integration

We can now introduce integration: our goal will be to integrate with respect to Brownian
motion.

To gain some understanding of what this means, recall Riemann integration: if
f : r0, 1s Ñ , then

ª 1

0
fpxqdx “ lim

nÑ8

nÿ

j“1

fpxj´1qpxj ´ xj´1q, xj :“ j

n
.

This also works just fine if you want to integrate with respect to a different variable:

u “ x2 ùñ
ª 1

0
fpxqdupxq :“ lim

nÑ8

nÿ

j“1

fpxj´1qpuj ´ uj´1q, uj :“ upxjq.

This inspires the following definition, which is the cornerstone of stochastic calculus:

Definition (Itô Integral)
Let fptq “ ft be a stochastic process (possibly also a deterministic function). Then we
define,

ª T

0
ftdBt :“ lim

nÑ8

nÿ

j“1

fptj´1q pBptjq ´ Bptj´1qq .

where Bt is a standard Brownian motion. This is called an Itô Integral.
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L21-S08Stochastic differentials
The stochastic process,

Xt “
ª T

0
ftdBt

is called a process that is driven by Brownian motion.

Because Riemann integration statements can be written in terms of differentials, then we
are tempted to use differential notation for the above expression:

dXt “ ftdBt ñ Xt “
ª T

0
ftdBt

It is important to understand that the differential notation is just notation! The real
meaning is an integral statement: a rigorous statement involving standard differentials and
derivatives is not possible!

However: this is our first example of a stochastic differential equation (SDE).

Example
Let Bt be a standard Brownian motion. Some direct computations involving B2

t allow us
both to compute

≥t
0 BtdBt, and to derive an SDE for B2

t .
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