Math 5760/6890: Introduction to Mathematical Finance A (rather non-technical) primer on Stochastic processes

See Petters and Dong 2016, Sections 6.1-6.6

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

November 14, 2023

A brief intro to stochastic processes
In order to gain further understanding of our continuous-time binomial tree construction, we require some language of stochastic processes.

The high-level idea: we'll be formalizing random variables that are functions of time t.

A brief intro to stochastic processes
In order to gain further understanding of our continuous-time binomial tree construction, we require some language of stochastic processes.

The high-level idea: we'll be formalizing random variables that are functions of time t.
To get there we'll go through some abstract formalization:

Definition

Let Ω be (probabilistic) event space, and let \mathcal{I} be a set.
A stochastic process $X=X(t, \omega)$ is a map,

$$
X: \mathcal{I} \times \Omega \rightarrow \mathbb{R}, \quad X(t, \omega) \in \mathbb{R} \text { for every } t \in \mathcal{I} \text { and } \omega \in \Omega
$$

A brief intro to stochastic processes
In order to gain further understanding of our continuous-time binomial tree construction, we require some language of stochastic processes.

The high-level idea: we'll be formalizing random variables that are functions of time t.
To get there we'll go through some abstract formalization:

Definition

Let Ω be (probabilistic) event space, and let \mathcal{I} be a set.
A stochastic process $X=X(t, \omega)$ is a map,

$$
X: \mathcal{I} \times \Omega \rightarrow \mathbb{R}, \quad X(t, \omega) \in \mathbb{R} \text { for every } t \in \mathcal{I} \text { and } \omega \in \Omega
$$

The set \mathcal{I} is called the index set of the process X, and \mathbb{R} is the state space.
For fixed $t \in \mathcal{I}, X(t, \cdot)$ is a scalar random variable (e.g., and has a distribution).
For fixed $\omega \in \Omega, X(\cdot, \omega)$ is a deterministic scalar-valued function on the domain \mathcal{I}.

Some examples

Example

Let $\boldsymbol{X} \in \mathbb{R}^{N}$ be a random vector. (Say the unknown time-1 price in Markowitz portfolio analysis.)

Then \boldsymbol{X} is a stochastic process with index set $\mathcal{I}=\{1,2, \ldots, N\}$.

Some examples

Example

Let $\boldsymbol{X} \in \mathbb{R}^{N}$ be a random vector. (Say the unknown time-1 price in Markowitz portfolio analysis.)

Then \boldsymbol{X} is a stochastic process with index set $\mathcal{I}=\{1,2, \ldots, N\}$.

Example

Consider an n-period Binomial tree model with parameters $(p, u, d)=\left(p_{n}, u_{n}, d_{n}\right)$ fixed. (E.g., via a CRR model.)

The asset prices at every period can be lumped into a vector $\boldsymbol{S}:=\left(S_{0}, S_{1}, \ldots, S_{n}\right)^{T} \in \mathbb{R}^{n+1}$.

Example

Let $\boldsymbol{X} \in \mathbb{R}^{N}$ be a random vector. (Say the unknown time-1 price in Markowitz portfolio analysis.)

Then \boldsymbol{X} is a stochastic process with index set $\mathcal{I}=\{1,2, \ldots, N\}$.

Example

Consider an n-period Binomial tree model with parameters $(p, u, d)=\left(p_{n}, u_{n}, d_{n}\right)$ fixed. (E.g., via a CRR model.)

The asset prices at every period can be lumped into a vector $\boldsymbol{S}:=\left(S_{0}, S_{1}, \ldots, S_{n}\right)^{T} \in \mathbb{R}^{n+1}$.

Then S is a stochastic process with index set $\mathcal{I}=\{0,1, \ldots, n\}$.

Continuum index sets
The previous examples had discrete index sets.
Of course, there is nothing stopping us from considering a continuous index set.
For example, if $S(t), t \in[0, T]$ was the continuous-time model that we described from our $n \uparrow \infty$ limit of the CRR model, then S is a stochastic process with index set $\mathcal{I}=[0, T]$.

$$
\text { Recall: } S(t) \sim \operatorname{lognarmal}\left(\log S_{0}+\mu t, \sigma^{2} t\right)
$$

The previous examples had discrete index sets.
Of course, there is nothing stopping us from considering a continuous index set.
For example, if $S(t), t \in[0, T]$ was the continuous-time model that we described from our $n \uparrow \infty$ limit of the CRR model, then S is a stochastic process with index set $\mathcal{I}=[0, T]$.

When we have an index set that's a continuum, we can discussing some standard notions of functional analysis.

Definition

A realization of a stochastic process $X(\cdot, \omega)$ (for a fixed $\omega \in \Omega$) with a continuum index set \mathcal{I} is said to have a continuous sample path if

$$
\lim _{s \rightarrow t} X(s, \omega)=X(\nless, \omega), \quad \text { for every } t \in \mathcal{I}
$$

This notion of continuity involves a single, fixed ω.

Continuous stochastic processes
A proper extension of continuity (or any other) property to "all ω " is more delicate.

Definition

Let X be a stochastic process with a continuum index set $\mathcal{I}=[0, \infty)$. Then X is continuous if

$$
\widetilde{\Omega}:=\{\omega \in \Omega \mid X \text { has a continuous sample path at } \omega\},
$$

satisfies $P(\widetilde{\Omega})=1$.
Alternative languange: X is sample-path continuous, or almost surely continuous, or continuous with probability 1 .

Continuous stochastic processes

A proper extension of continuity (or any other) property to "all ω " is more delicate.

Definition

Let X be a stochastic process with a continuum index set $\mathcal{I}=[0, \infty)$. Then X is continuous if

$$
\widetilde{\Omega}:=\{\omega \in \Omega \mid X \text { has a continuous sample path at } \omega\},
$$

satisfies $P(\widetilde{\Omega})=1$.
Alternative languange: X is sample-path continuous, or almost surely continuous, or continuous with probability 1 .

Why not "for all ω "?
The mathematics of stochastic processes makes statements "with probability 1" the more natural statements to consider.

Asking for properties "for every ω " is too strong in the sense that asserting this limits our flexibility for analysis.

And since we really only care about probabilities of things, asking for statements in terms of probabilities is conceptually natural.

A stochastic process for securities
Our next major goal will be to identify and investigate a particular stochastic process that forms the foundation of mathematical finance.

To describe what kind of stochastic process we want, let's consider the log-return for our n-period discrete-time binomial tree model:

$$
S_{j}=S\left(t_{j}\right), \quad L_{j}=\log \frac{S_{j+1}}{S_{j}}, \quad t_{j}=j h_{n}, \quad h_{n}=\frac{T}{n}
$$

Recall that we model L_{j} through a coin flip. More precisely,

$$
L_{j} \sim \log d_{n}+\log \frac{u_{n}}{d_{n}} X, \quad X \sim \operatorname{Bernoulli}\left(p_{n}\right)
$$

A stochastic process for securities
Our next major goal will be to identify and investigate a particular stochastic process that forms the foundation of mathematical finance.

To describe what kind of stochastic process we want, let's consider the log-return for our n-period discrete-time binomial tree model:

$$
S_{j}=S\left(t_{j}\right), \quad L_{j}=\log \frac{S_{j+1}}{S_{j}}, \quad t_{j}=j h_{n}, \quad h_{n}=\frac{T}{n}
$$

Recall that we model L_{j} through a coin flip. More precisely,

$$
L_{j} \sim \log d_{n}+\log \frac{u_{n}}{d_{n}} X, \quad X \sim \operatorname{Bernoulli}\left(p_{n}\right)
$$

Suppose we take $n \uparrow \infty$, and we define $L(t)$ as the cumulative log-return from time 0 :

$$
L(T)^{"}=" \log S_{0}+\lim _{n \uparrow \infty} \sum_{j=1}^{n} L_{j} .
$$

where $n \uparrow \infty$ affects the values of $\left(p_{n}, u_{n}, d_{n}\right)$.

A stochastic process for securities
Our next major goal will be to identify and investigate a particular stochastic process that forms the foundation of mathematical finance.

To describe what kind of stochastic process we want, let's consider the log-return for our n-period discrete-time binomial tree model:

$$
S_{j}=S\left(t_{j}\right), \quad L_{j}=\log \frac{S_{j+1}}{S_{j}}, \quad t_{j}=j h_{n}, \quad h_{n}=\frac{T}{n}
$$

Recall that we model L_{j} through a coin flip. More precisely,

$$
L_{j} \sim \log d_{n}+\log \frac{u_{n}}{d_{n}} X, \quad X \sim \operatorname{Bernoulli}\left(p_{n}\right)
$$

Suppose we take $n \uparrow \infty$, and we define $L(t)$ as the cumulative log-return from time 0 :

$$
L(T) "=" \log S_{0}+\lim _{n \uparrow \infty} \sum_{j=1}^{n} L_{j} .
$$

where $n \uparrow \infty$ affects the values of $\left(p_{n}, u_{n}, d_{n}\right)$.
This in principle defines a stochastic process $L(t)$ with index set $\mathcal{I}=[0, T]$. What properties should this process have?

A more explicit construction
Consider our real-world CRR tree, which assigns $\left(p_{n}, u_{n}, d_{n}\right)$ as,

$$
u_{n}=\exp \left(\sigma \sqrt{h_{n}}\right), \quad d_{n}=\exp \left(-\sigma \sqrt{h_{n}}\right), \quad p_{n}=\frac{1}{2}\left(1+\frac{\mu}{\sigma} \sqrt{h_{n}}\right)
$$

for given drift and volatility (μ, σ). These numbers affect the distribution of L_{j}.

Consider our real-world CRR tree, which assigns $\left(p_{n}, u_{n}, d_{n}\right)$ as,

$$
u_{n}=\exp \left(\sigma \sqrt{h_{n}}\right), \quad d_{n}=\exp \left(-\sigma \sqrt{h_{n}}\right), \quad p_{n}=\frac{1}{2}\left(1+\frac{\mu}{\sigma} \sqrt{h_{n}}\right)
$$

for given drift and volatility (μ, σ). These numbers affect the distribution of L_{j}.
Let's simplify things a bit: let's consider a particular real-world model with $(\mu, \sigma)=(0,1)$.
Under this assumption, then

$$
\log _{11} u_{n}
$$

$$
L_{j}=\left\{\begin{aligned}
\sqrt{h_{n}}, & \text { with probability } \frac{1}{2} \\
-\sqrt{h_{n}}, & \text { with probability } \frac{1}{2},
\end{aligned}\right.
$$

I.e., the cumulative sum of the L_{j} corres ${ }^{2}$ phds to a symmetric random walk.

Consider our real-world CRR tree, which assigns $\left(p_{n}, u_{n}, d_{n}\right)$ as,

$$
u_{n}=\exp \left(\sigma \sqrt{h_{n}}\right), \quad d_{n}=\exp \left(-\sigma \sqrt{h_{n}}\right), \quad p_{n}=\frac{1}{2}\left(1+\frac{\mu}{\sigma} \sqrt{h_{n}}\right)
$$

for given drift and volatility (μ, σ). These numbers affect the distribution of L_{j}.
Let's simplify things a bit: let's consider a particular real-world model with $(\mu, \sigma)=(0,1)$.
Under this assumption, then

$$
L_{j}=\left\{\begin{aligned}
\sqrt{h_{n}}, & \text { with probability } \frac{1}{2} \\
-\sqrt{h_{n}}, & \text { with probability } \frac{1}{2}
\end{aligned}\right.
$$

I.e., the cumulative sum of the L_{j} corresponds to a symmetric random walk.

The goal now is to identify/construct a stochastic process $L(t)$ that:

- is consistent with what happens to $\log \left(S_{n} / S_{0}\right)$ when we take $n \uparrow \infty$
- has the properties we desire from the finance perspective

$$
\begin{aligned}
& S(t) \sim \log n o m a l\left(\log S_{0} t \mu t, \sigma^{2} t\right) \\
& L(t) \sim N\left(\mu t, \sigma^{2} t\right)
\end{aligned}
$$

We want the following things in a putative continuous-time stochastic process $L(t)$:

- We want $L(t)$ to be distributed like $\mathcal{N}(0, t)$ for all t.

We want the following things in a putative continuous-time stochastic process $L(t)$:

- We want $L(t)$ to be distributed like $\mathcal{N}(0, t)$ for all t.
- We want non-overlapping increments, like $L(3)-L(2)$ and $L(2)-L(1)$, to have independent distributions.

We want the following things in a putative continuous-time stochastic process $L(t)$:

- We want $L(t)$ to be distributed like $\mathcal{N}(0, t)$ for all t.
- We want non-overlapping increments, like $L(3)-L(2)$ and $L(2)-L(1)$, to have independent distributions.
- If we know that $L(t)=L_{0}$, then we want the increments, $L(t+\epsilon)-L(t)$, to be distributed like $\mathcal{N}(0, \epsilon)$.

We want the following things in a putative continuous-time stochastic process $L(t)$:

- We want $L(t)$ to be distributed like $\mathcal{N}(0, t)$ for all t.
- We want non-overlapping increments, like $L(3)-L(2)$ and $L(2)-L(1)$, to have independent distributions.
- If we know that $L(t)=L_{0}$, then we want the increments, $L(t+\epsilon)-L(t)$, to be distributed like $\mathcal{N}(0, \epsilon)$.
- We want Markovian structure: If we assume the knowledge $L(t)=L_{0}$, then our understanding of the properties and distribution of $L(s)$ for $s>t$ is the same as if we had knowledge of $L(r)$ for all $r \leqslant t$.

We want the following things in a putative continuous-time stochastic process $L(t)$:

- We want $L(t)$ to be distributed like $\mathcal{N}(0, t)$ for all t.
- We want non-overlapping increments, like $L(3)-L(2)$ and $L(2)-L(1)$, to have independent distributions.
- If we know that $L(t)=L_{0}$, then we want the increments, $L(t+\epsilon)-L(t)$, to be distributed like $\mathcal{N}(0, \epsilon)$.
- We want Markovian structure: If we assume the knowledge $L(t)=L_{0}$, then our understanding of the properties and distribution of $L(s)$ for $s>t$ is the same as if we had knowledge of $L(r)$ for all $r \leqslant t$.
There is essentially just one process satisfying these conditions: Brownian motion.

Brownian motion

Definition

With index set $\mathcal{I}=[0, \infty)$, a standard Brownian motion/Wiener process $B=B_{t}=B(t)$ is a stochastic process satisfying

1. $P(B(0)=0)=1$
2. B is continuous with probability 1
3. The n sequential increments formed by any choice of $n+1$ ordered time points t_{1}, \ldots, t_{n+1} are mutually independent
4. For any $0 \leqslant s \leqslant t<\infty$, then $B(t)-B(s) \sim \mathcal{N}(0, t-s)$.

Brownian motion

Definition

With index set $\mathcal{I}=[0, \infty)$, a standard Brownian motion/Wiener process $B=B_{t}=B(t)$ is a stochastic process satisfying

1. $P(B(0)=0)=1$
2. B is continuous with probability 1
3. The n sequential increments formed by any choice of $n+1$ ordered time points t_{1}, \ldots, t_{n+1} are mutually independent
4. For any $0 \leqslant s \leqslant t<\infty$, then $B(t)-B(s) \sim \mathcal{N}(0, t-s)$.

Some initial remarks:

- The reason we use indefinite articles (a Brownian motion) is the same reason we use indefinite articles to describe random variables (X is a normal random variable).

Definition

With index set $\mathcal{I}=[0, \infty)$, a standard Brownian motion/Wiener process $B=B_{t}=B(t)$ is a stochastic process satisfying

1. $P(B(0)=0)=1$
2. B is continuous with probability 1
3. The n sequential increments formed by any choice of $n+1$ ordered time points t_{1}, \ldots, t_{n+1} are mutually independent
4. For any $0 \leqslant s \leqslant t<\infty$, then $B(t)-B(s) \sim \mathcal{N}(0, t-s)$.

Some initial remarks:

- The reason we use indefinite articles (a Brownian motion) is the same reason we use indefinite articles to describe random variables (X is a normal random variable).
- The last property implies that for every $s, t, h \geqslant 0$:

$$
B(t+h)-B(t) \sim B(s+h)-B(s) \sim \mathcal{N}(0, h)
$$

Definition

With index set $\mathcal{I}=[0, \infty)$, a standard Brownian motion/Wiener process $B=B_{t}=B(t)$ is a stochastic process satisfying

1. $P(B(0)=0)=1$
2. B is continuous with probability 1
3. The n sequential increments formed by any choice of $n+1$ ordered time points t_{1}, \ldots, t_{n+1} are mutually independent
4. For any $0 \leqslant s \leqslant t<\infty$, then $B(t)-B(s) \sim \mathcal{N}(0, t-s)$.

Some initial remarks:

- The reason we use indefinite articles (a Brownian motion) is the same reason we use indefinite articles to describe random variables (X is a normal random variable).
- The last property implies that for every $s, t, h \geqslant 0$:

$$
B(t+h)-B(t) \sim B(s+h)-B(s) \sim \mathcal{N}(0, h)
$$

- The four properties above are typically concisely referred to, respectively, as: $B(0)=\neq$ with probability $1, B$ is sample-continuous with probability $1, B$ has independent increments, and B has (time-)stationary and normally-distributed increments.

Let $B(t)$ be a standard Brownian motion, and let $b_{0} \in \mathbb{R}, \mu \in \mathbb{R}$, and $\sigma>0$. Then the process

$$
A(t)=b_{0}+\mu t+\sigma B(t)
$$

is a Brownian motion with drift and scaling:

- It has time-0 value b_{0} with probability 1.
- It has deterministic drift μt
- It has scaling σ

Let $B(t)$ be a standard Brownian motion, and let $b_{0} \in \mathbb{R}, \mu \in \mathbb{R}$, and $\sigma>0$. Then the process

$$
A(t)=b_{0}+\mu t+\sigma B(t)
$$

is a Brownian motion with drift and scaling:

- It has time-0 value b_{0} with probability 1.
- It has deterministic drift μt
- It has scaling σ

Example

What distribution do the increments of $A(t)$ have?

$$
A(s)-A(t)=\mu(s-t)+\sigma(\underbrace{B(s(t)}_{\sim N(0, \mid s-t)}) \sim N\left(\mu(s-t), \sigma^{2}|s-t|\right)
$$

Other properties

Brownian motion is a fascinating object:

- With probability 1 , the sample path $B(\cdot, \omega)$ is continuous in time.

Other properties
Brownian motion is a fascinating object:

- With probability 1 , the sample path $B(\cdot, \omega)$ is continuous in time.
- With probability 1 , the sample path $B(\cdot, \omega)$ is differentiable nowhere

$$
\begin{aligned}
& \text { why? } L_{j+1} L_{j} \sim \begin{cases}\sqrt{h_{n}}, & w / p o b / / 2 \\
-\sqrt{h_{n}} & w / p r o b^{\prime} / 2\end{cases} \\
& { }^{\prime \cdot d L}{ }^{r \prime}=\frac{L_{j+1}-L_{j}}{h_{n}}=\frac{ \pm 1}{\sqrt{h_{n}}} \quad \begin{array}{ll}
\lim _{h_{n} \rightarrow 0} & \frac{d L}{d t}
\end{array} \rightarrow \text { ONE }
\end{aligned}
$$

Other properties
Brownian motion is a fascinating object:

- With probability 1 , the sample path $B(\cdot, \omega)$ is continuous in time.
- With probability 1 , the sample path $B(\cdot, \omega)$ is differentiable nowhere
- For any interval $I \subset[0, \infty)$ of finite length, with probability 1 , the sample path $B(\cdot, \omega)$ has infinite "variation" on I.

$$
f(x), x \in[0,1]
$$

"variation": amount of change that f undergoes

Other properties

Brownian motion is a fascinating object:

- With probability 1 , the sample path $B(\cdot, \omega)$ is continuous in time.
- With probability 1 , the sample path $B(\cdot, \omega)$ is differentiable nowhere
- For any interval $I \subset[0, \infty)$ of finite length, with probability 1 , the sample path $B(\cdot, \omega)$ has infinite "variation" on I.
- B has Markovian structure: Fix $s>0$ and define $A(t):=B(t+s)-B(s)$. Then $A(t)$ and $B(t)$ have the same distribution, and in particular A is a standard Brownian motion.

Other properties

Brownian motion is a fascinating object:

- With probability 1 , the sample path $B(\cdot, \omega)$ is continuous in time.
- With probability 1 , the sample path $B(\cdot, \omega)$ is differentiable nowhere
- For any interval $I \subset[0, \infty)$ of finite length, with probability 1 , the sample path $B(\cdot, \omega)$ has infinite "variation" on I.
- B has Markovian structure: Fix $s>0$ and define $A(t):=B(t+s)-B(s)$. Then $A(t)$ and $B(t)$ have the same distribution, and in particular A is a standard Brownian motion.
- Sample paths of Brownian motion are self-similar/fractals. In particular, for any $c>0$, the process $\frac{1}{c} B\left(c^{2} t\right)$ is a standard Brownian motion.

Self-similarity of Brownian paths

To close the loop: a standard Brownian motion $B(t)$ is exactly a continuous-time process whose properties line up with $L(t)$, our continuous-time limit of the binomial tree model.

In particular, if $\left(\mu, \sigma, S_{0}\right)=(0,1,1)$, then we will identify

$$
L(t) "=" B(t) .
$$

To close the loop: a standard Brownian motion $B(t)$ is exactly a continuous-time process whose properties line up with $L(t)$, our continuous-time limit of the binomial tree model.

In particular, if $\left(\mu, \sigma, S_{0}\right)=(0,1,1)$, then we will identify

$$
L(t) "=" B(t) .
$$

As one might expect, for $\mu \neq 0$ and $\sigma \neq 1$, then the appropriate identification is,

$$
L(t) "=" \mu t+\sigma B(t) .
$$

To close the loop: a standard Brownian motion $B(t)$ is exactly a continuous-time process whose properties line up with $L(t)$, our continuous-time limit of the binomial tree model.

In particular, if $\left(\mu, \sigma, S_{0}\right)=(0,1,1)$, then we will identify

$$
L(t) "=" B(t) .
$$

As one might expect, for $\mu \neq 0$ and $\sigma \neq 1$, then the appropriate identification is,

$$
L(t) "=" \mu t+\sigma B(t) .
$$

While in principle we are done in terms of identifying a mathematical model for $L(t)$, we have actually just begun to reap benefits from this model.

In particular, the fact that $B(t)$ has sample paths or trajectories suggests that there is an underlying time-evolution law.

Stochastic calculus is the appropriate language we'll use to explore such concepts.

Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition. Springer. ISBN: 978-1-4939-3783-7.

