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L19-S02The binomial tree pricing and CRR models

We have modeled a security’s price Sj “ Sptjq via,

Sj`1 “ Gj`1Sj , Gj “
"

u, with probability p
d, with probability 1 ´ p

From this model, we’ve concluded:
– L :“ logpSn{S0q is a scaled/shifted Binomialpn, pq random variable.
– Sn “ S0eL is the exponential of a scaled/shifted Binomial random variable
– The triple pp, u, dq determines the distribution entirely.

The CRR model places the following additional constraints on our standard Binomial tree
model:

– Geometric symmetry of tree prices: u “ 1{d
– The continuous-time limit of the expected log-return matches the real-world drift:
– The continuous-time limit of the variance of the log-return matches the real-world

(squared) volatility:
This results (after some approximation) in the following real-world CRR equations:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ 1

2

´
1 ` µ

�

a
hn

¯
.
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L19-S03The distribution of Sn

What kind of distribution does Sn have? It will be useful to write Sn in terms of
standardizations of Lj .

A standardization of Lj (or of any random variable) is

ÄLj “ Lj ´ Lja
VarLj

,

i.e., it is a centered version of Lj , inversely scaled by its standard deviation:
standardizations of random variables are mean-0 and variance-1.

In terms of the Binomial tree parameters pn, we have that,

Lj “ µhn, VarLj “ 4pnp1 ´ pnq�2hn.

Note that this agrees with our real-world CRR approximation for large n: VarLj „ �2hn.
Hence, the rLj variables have distribution:

With the standardization of the Lj variables, we have,

Sn “ S0 exp

¨

˝
nÿ

j“1

´
Lj ` rLj

a
VarLj

¯
˛

‚.
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L19-S04The distribution of Sn

Sn “ S0 exp

¨

˝
nÿ

j“1

´
Lj ` rLj

a
VarLj

¯
˛

‚.

This expression allows to us understand the large-n behavior of Sn.

After some manipulation, we find that

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

The goal is to take n Ò 8.

Note that:

lim
nÒ8

exppµT q “ exppµT q, lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

But what about exp
´

1?
n

∞n
j“1

rLj

¯
?
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L19-S05The central limit theorem

The form of the quantity,

1?
n

nÿ

j“1

rLj ,

is reminiscent of a classical result in probability theory.

Theorem (Central Limit Theorem)
Let tXju8

j“1 be iid random variables with zero mean and variance �2. Then,

lim
nÑ8

1?
n

nÿ

j“1

Xj „ N p0,�2q.

Remarks:
– This result is convergence in distribution, but is not stronger than that.
– A direct corollary: the error of the empirical “Monte Carlo” mean scales likea

VarXj{?
n.

– It is important that the Xj random variables not depend on n.
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L19-S06Back to the CRR model
We need to determine the n-asymptotic behavior of

1?
n

nÿ

j“1

rLj ,

where the rLj are indeed iid.

The problem: The distribution of rLj does depend on n.

To more formally understand why this is an issue: for each fixed n, we have the collection
of random variables,

rLn,1, rLn,2, . . . , rLn,n, rLn,j “ Lj ´ Lja
VarLj

However, the parameter ppn, un, dnq depend on n, and therefore the distribution of rLn,j

depends on n.

The Central Limit Theorem as we’ve stated it does not directly tell us about the n Ñ 8
limit of,

1?
n

nÿ

j“1

rLn,j .
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L19-S07The fix

Although the distribution of rLn,j depends on n, for large n and m the distributions of
rLn,j and rLm,j are actually quite similar.

In our case, for example, we could write the pn ` 1qst summation as,

1?
n ` 1

n`1ÿ

j“1

rLn`1,j “ 1?
n ` 1

nÿ

j“1

rLn,j ` 1?
n ` 1

rLn`1,n`1

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
paq

` 1?
n ` 1

nÿ

j“1

”
rLn`1,j ´ rLn,j

ı
.

Term (a) is a sum of n ` 1 independent random variables scaled by 1{?
n ` 1, but the

pn ` 1qst summand is not identically distributed.

Hence, if we had a Central Limit Theorem for non-identically distributed random variables,
we could tackle this case.
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L19-S08The Lindeberg Condition
Let tXju8

j“1 be independent and mean-zero, but not identically distributed.

Definition (Lindeberg’s condition)
Let ⌃2

n :“ ∞n
j“1 VarXj .

Lindeberg’s condition is the following on the sequence tXju8
j“1: For every ✏ ° 0, we have,

lim
nÒ8

∞n
j“1

”
X2

j |Xj |°✏⌃n

ı

⌃2
n

“ 0.

Theorem ((Lindeberg) Central Limit Theorem)
Suppose tXju8

j“1 are independent and mean-zero, and satisfy Lindeberg’s condition. Then,

lim
nÒ8

1

⌃n

nÿ

j“1

Xj „ N p0, 1q.

The upshot for us: so long as our random variables satisfy the appropriate version of
Lindeberg’s condition, then we can use the Central Limit Theorem.
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L19-S09Lindeberg’s condition

For our (“triangular”) sequence of random variables, trLn,junj“1 with n P , Lindeberg’s
condition for this setup is: For every ✏ ° 0,

lim
nÒ8

1

n

nÿ

j“1

”
rL2
n,j | rLn,j |°?

n✏

ı
“ 0.

This holds in our particular case, which implies:

lim
nÒ8

1?
n

nÿ

j“1

rLn,j „ N p0, 1q.
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L19-S10Back to securities
Finally, recall that we started with the assertions:

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

lim
nÒ8

exppµT q “ exppµT q,

lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

We now add to this:

lim
nÒ8

1?
n

nÿ

j“1

rLn,j „ N p0, 1q.

Therefore, if X „ N p0, 1q, then

lim
nÒ8

Sn „ S0 exppµT ` X�
?
T q.

Put another way: if Z „ N pµT,�
?
T q, then

lim
nÒ8

Sn „ S0 exppZq,

i.e., the continuous-time limit of Sn is the exponential of a normally distributed random
variable.
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i.e., the continuous-time limit of Sn is the exponential of a normally distributed random
variable.
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L19-S11The continuous-time price

If we let SpT q denote the n Ò 8 limit of Sn, we conclude that,

SpT q „ S0 exppZq, Z „ N pµT,�2T q.

A random variable that is the exponential of a normal random variable is called a
lognormal random variable.

I.e., our continuous-time security price is a lognormal random variable, which is typically
written as,

SpT q „ lognormalpµT ` logS0,�
2T q.

– Note that T is arbitrary; e.g., the same rationale implies that SpT {2q is also a
lognormal random variable.

– It is not true that SpT q “ µT or SpT q “ exppµT q. In fact, one can show that

SpT q “ exp

ˆ
µT ` �2

2
T

˙
.

Note that this matches our expression for the mean from last time.
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L19-S12Modeling continuous-time prices
For any t ° 0, our continuous-time CRR model states:

Sptq „ lognormalpµt ` logS0,�
2tq.

How would we simulate a trajectory given pS0, µ,�2q? Well, for each t, we could:
1. Generate Z „ N pµt ` logS0,�2tq
2. Set Sptq “ exppZq

(It’s true that above Sptq as the correct distribution.)

This, unfortunately, does not produce what we expect:
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L19-S13Temporal structure

The missing piece of the puzzle for us is the temporal structure of the signal: consider the
model

Sptq „ lognormalpµt ` logS0,�
2tq.

for very small t ! 1.

In this case, Sptq is “very close” to exp logS0 “ S0. This fact is reflected in the generated
image.

What is not accounted for is the Markovian structure of this process: I.e., while SpT q has
the distributed specified, if we are provided that the price at time T ´ ✏ is SpT ´ ✏q “ s,
then SpT q conditioned on this value has a lognormal distribution with small parameters:

SpT q
ˇ̌
SpT ´ ✏q „ lognormalplogSpT ´ ✏q ` µ✏,�2✏q

I.e., SpT q should be constrained to lie “close” to SpT ´ ✏q, and in particular the asset
price should be continuous in time.

We have not captured this structure by only inspecting the distribution.

To more formally understand these concepts, we’ll need to introduce stochastic processes
(next time).
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L19-S14Risk-neutrality redux

It’s worth considering one more specialization of the (finite-n) binomial tree: the risk
neutral tree.

Recall the principle of risk neutrality: a probabilstic model is risk neutral if the model’s
expected value of the asset equals the future value of today’s price.

When in the context of probabilistic modeling, risk neutrality assumes that the outcomes
are the same as in the marketplace.

For binomial trees, the family of outcomes is determined entirely by pun, dnq, which in turn
are estimated from real (marketplace) pµ,�q data.

Hence, in a risk-neutral “world”, the values un and dn should match their values in the
marketplace, i.e., due to the real-world CRR equations:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, (risk neutral)
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L19-S15The risk-neutral probability

What does change in a risk-neutral world is the probabilistic structure, i.e., pn.

We choose pn so that,

FVpSpt0qq “ Spt1q.

To determine future value, we need the analogue of a risk-free (interest) rate for securities.

Recall that this is provided by
– the actual risk-free rate r ° 0 (e.g., from risk-free securities)
– the dividend rate ´q † 0 (a negative rate because paying dividends decreases

capital/worth)
Hence: FVpSpt0qq “ epr´qqhnSpt0q. Using this in the risk-neutrality condition, we have,

epr´qqhn “ pnun ` p1 ´ pnqdn,

i.e.,

pn “ epr´qqhn ´ dn
un ´ dn

.

(Recall a convenient fact: assuming a no-arbitrage market implies 0 † pn † 1.)
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L19-S16The risk-neutral CRR model

The risk-neutral CRR model has the conditions:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ epr´qqhn ´ dn

un ´ dn
.

With some analysis (similar to the standard CRR model), one can determine that for large
n, one has the valid approximationsk

un “ expp�RN

a
hnq, dn “ expp´�RN

a
hnq, pn “ 1

2

ˆ
1 ` µRN

�RN

a
hn

˙
,

where pµRN ,�RN q are the risk-neutral drift and volatility, which satisfy:

�RN “ �, µRN “ r ´ q ´ �2

2

Hence, one can use these equations to set ppn, un, dnq for a risk-neutral CRR tree.

Note that under this model,

SpT q “ S0 exppµRNT ` T�2
RN {2q “ S0 exp pr ´ qqT

precisely as expected from a risk-neutral model.
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