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The binomial tree pricing and CRR models L18-502

We have modeled a security’s price S; = S(t;) via,

. , | u, with probability p
Si41 = G155, Gi = { d, with probability 1 —p

From this model, we've concluded:
— L :=1log(S,/Sp) is a scaled/shifted Binomial(n, p) random variable.
— Sn = Spel is the exponential of a scaled/shifted Binomial random variable
— The triple (p,u, d) determines the distribution entirely.
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The binomial tree pricing and CRR models L18-502

We have modeled a security’s price S; = S(t;) via,

Sj+1 = Gj+15j,

G =] W with probability p
77| d, with probability 1 —p

From this model, we've concluded:

— L :=1log(S,/Sp) is a scaled/shifted Binomial(n, p) random variable.
— Sn = Spel is the exponential of a scaled/shifted Binomial random variable
— The triple (p,u, d) determines the distribution entirely.

The CRR model places the following additional constraints on our standard Binomial tree
model:

— Geometric symmetry of tree prices: u = 1/d
— The continuous-time limit of the expected log-return matches the real-world drift:

, 1
p= lim —IEL;

n—00 n

— The continuous-time limit of the variance of the log-return matches the real-world
(squared) volatility:

2 . 1
o = lim —VarLj
n—o0 n

Hence, for finite n, (p,u,d) should depend on the time discretization parameter n. l.e.:

(p7 u, d) — (pna Un, dn)

Goal: use CRR constraints to choose (p,,., Urn.d,).
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The problem setup L18-503

We seek to construct a fixed, finite-n Binomial tree model over the time period [0,T]. l.e.,
we seek to compute (pn, Un,dy) for a fixed n and h,, = T'/n.

We assume that the (continuous-time) drift and volatility parameters (u, o) are available to
us.

(E.g., we've computed approximations to them from historical data.)
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The problem setup L18-503

We seek to construct a fixed, finite-n Binomial tree model over the time period [0,T]. l.e.,
we seek to compute (pn, Un,dy) for a fixed n and h,, = T'/n.

We assume that the (continuous-time) drift and volatility parameters (u, o) are available to
us.

(E.g., we've computed approximations to them from historical data.)

Our starting point should be to understand how the CRR assumptions/constraints affect
(Pr, Un, dpn):
— dp = 1/up = need only determine (py, un).
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The problem setup L18-503

We seek to construct a fixed, finite-n Binomial tree model over the time period [0,T]. l.e.,
we seek to compute (pn, Un,dy) for a fixed n and h,, = T'/n.

We assume that the (continuous-time) drift and volatility parameters (u, o) are available to
us.

(E.g., we've computed approximations to them from historical data.)

Our starting point should be to understand how the CRR assumptions/constraints affect
(Pr, Un, dpn):

— dp = 1/up = need only determine (py, un).

— Drift matching: ldeally, we have,

= s .
h Hn H

We can’t really do this directly since we only want to construct (p,,,un ) for finite n.
Hence, we will instead impose:
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The problem setup L18-503

We seek to construct a fixed, finite-n Binomial tree model over the time period [0,T]. l.e.,
we seek to compute (pn, Un,dy) for a fixed n and h,, = T'/n.

We assume that the (continuous-time) drift and volatility parameters (u, o) are available to
us.

(E.g., we've computed approximations to them from historical data.)

Our starting point should be to understand how the CRR assumptions/constraints affect
(Pr, Un, dpn):

— dp = 1/up = need only determine (py, un).

— Drift matching: ldeally, we have,

= s .
h Hn H

We can’t really do this directly since we only want to construct (p,,,un ) for finite n.
Hence, we will instead impose:

EL;
T fhn & [

— We have a similar condition for matching the volatility:
hn, "
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The CRR setup, | L18-504

Our CRR conditions require statistics of the inter-period log-returns, e.g.,

ELj, VarLj.
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The CRR setup, | L18-504

Our CRR conditions require statistics of the inter-period log-returns, e.g.,

IELj, VarLj. ~/
4= I,
Of course, we know how to compute these: We have,
L; =logd, + X log Z—n = —logun + 2X; log un,
n

where X; ~ Bernoulli(pn).

Reall” EX = P,,m (I- h\-O * P
Vor ;= (E (- ) 1> = ;9,,(f~pv,)'L«-(’f-yv.)(f-pv,)Q
[ “Np‘\) “’ph ‘Lfn] = fr II-
= [ELJ'"‘ ’[ﬂz)um* Q“P"\ Z")U.\" (Qp,\'-\)% Un
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The CRR setup, | L18-504

Our CRR conditions require statistics of the inter-period log-returns, e.g.,
ELj, VarLj.
Of course, we know how to compute these: We have,

L; =logd, + X log Z—n = —logun + 2X; log un,

n

where X; ~ Bernoulli(pn).
Therefore:

EL; = (2ph— 1) log un, VarL; = 4pp (1 — pp)(log un)?
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The CRR setup, || L18-505

Therefore, our CRR constraints are the following:

1
dn:_

Un

_ (2—17
szph 1logun =D /U ’Lé@u )

2 4dpn (1 )
hn

(log un)?.

o

where we have replaced some instances of “~" with “=".

=) /MZQ = Jh‘[.(gf'—)ij . (= W”Zz
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The CRR setup, L18-505

Therefore, our CRR constraints are the following:

1
dn:_
Un
2p—11
K h g
4: n 1_ n
o2 = L (h P )(logun)2

where we have replaced some instances of “~" with “=".

After some computations and approximations, we arrive at the following real-world CRR
equations:

Pn R % (1 + H\/hn) : Un =~ exp(or/ hn), dn, ~ exp(—or/hy).
o
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The real-world CRR tree L18-S06

A “real-world” CRR tree/model is therefore constructed in the following way:
— Historical data is used to compute an asset’s continuous-time drift and volatility (u, o)
— The terminal time T' and number of periods n is determined. h, = T /n.

— The real-world CRR equations are used to set (pn,un,dn):

DPn = % (1 + ﬁ«/hn) , Un = exp(or/ hn), dn, = exp(—or/hy).
o
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Let's play a game L18-507

Which is the simulated price?
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Let's play a game, Il L18-508

Which prices are simulated?

2.51

2.0 A
2 -MW-W
1.0

0.5 A

5(t)/s(0)

0.0 T T T T T
200 400 600 800 1000

2.5 1
2.0 1
1.5 A

5(t)/5(0)

1.0 1
0.5 1

0.0 T T T T T
0 200 400 600 800 1000

N
U

5(t)/5(0)
=R N
o wu o

© o ¢
o

400 600 800 1000

o
N
o 4
o

NN
o

5(t)/s(0)

=P
o w
L

_WWWMMW

o ©
o

400 600 800 1000
Time t (days)

o
N
o 4
o

A. Narayan (U. Utah — Math/SClI) Math 5760/6890: The Cox-Ross-Rubinstein model, 11



Let's play a game, Il L18-508
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Some CRR properties, | L18-509

Some initial observations about the tuple (pn,un,dy) of the real-world CRR model:
— Because u,, = exp(ov/hy), and hy = T'/n, then

lim u, =1,
ntoo

and similarly for d,, = 1/up,.
l.e., the uptick and downtick geometric rates become very close to unity for large n.
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Some CRR properties, | L18-509

Some initial observations about the tuple (pn,un,dy) of the real-world CRR model:
— Because u,, = exp(ov/hy), and hy = T'/n, then

lim u, =1,
ntoo

and similarly for d,, = 1/up,.
l.e., the uptick and downtick geometric rates become very close to unity for large n.

— Because p,, = % (1 + %\/E,) then

lim p, = —

Y
ntoo

so that for large n the CRR tree tends toward fair coin flips.
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Some CRR properties, |l L18-510

What kind of statistics does S,, have under this model? We have,
S, = Spoel = S exp(Z Lj).
j=1

We've seen that
ESn, = So (pnun + (1 —pn)dn)",

and we have the real-world CRR equations:

1
Pn = = (1 + gv hn) : up = exp(ov/ hn), dy, = exp(—or/hy).

2

(P"‘u“ f((~pw)dw5“ = [ﬁ(!f A ) @xp(ﬂhj)
Pl A ) eyl %) )"
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Some CRR properties, Il « » -+ < }§ L18-510

S, .
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What kind of statistics does S,, have under this model? Weﬂhave,
S, = Spoel = S eXp(Z Lj).
j=1

We've seen that
ESn, = So (pnun + (1 —pn)dn)",

and we have the real-world CRR equations:

1
Pn = = (1 + 5\/ hn) : up = exp(ov/ hn), dy, = exp(—or/hy).

2

These allow us to conclude:

2
lim ES,, = Soexp [(u — U—) T] ,
n 100 2

i.e., there is a well-defined limit independent of the discretization parameters n and h,,.

A. Narayan (U. Utah — Math/SCI) Math 5760/6890: The Cox-Ross-Rubinstein model, 11



References | L18-S12

@ Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical

Finance with Applications: Understanding and Building Financial Intuition. Springer.
ISBN: 978-1-4939-3783-7.

A. Narayan (U. Utah — Math/SClI) Math 5760/6890: The Cox-Ross-Rubinstein model, 11



