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L18-S02The binomial tree pricing and CRR models

We have modeled a security’s price Sj “ Sptjq via,

Sj`1 “ Gj`1Sj , Gj “
"

u, with probability p
d, with probability 1 ´ p

From this model, we’ve concluded:
– L :“ logpSn{S0q is a scaled/shifted Binomialpn, pq random variable.
– Sn “ S0eL is the exponential of a scaled/shifted Binomial random variable
– The triple pp, u, dq determines the distribution entirely.

The CRR model places the following additional constraints on our standard Binomial tree
model:

– Geometric symmetry of tree prices: u “ 1{d
– The continuous-time limit of the expected log-return matches the real-world drift:

µ “ lim
nÑ8

1

hn
Lj

– The continuous-time limit of the variance of the log-return matches the real-world
(squared) volatility:

�2 “ lim
nÑ8

1

hn
VarLj

Hence, for finite n, pp, u, dq should depend on the time discretization parameter n. I.e.:

pp, u, dq “ ppn, un, dnq.
Goal: use CRR constraints to choose ppn, un, dnq.
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L18-S03The problem setup
We seek to construct a fixed, finite-n Binomial tree model over the time period r0, T s. I.e.,
we seek to compute ppn, un, dnq for a fixed n and hn “ T {n.

We assume that the (continuous-time) drift and volatility parameters pµ,�q are available to
us.
(E.g., we’ve computed approximations to them from historical data.)

Our starting point should be to understand how the CRR assumptions/constraints affect
ppn, un, dnq:

– dn “ 1{un ùñ need only determine ppn, unq.
– Drift matching: Ideally, we have,

Lj

hn
“ µn

nÒ8›››Ñ µ.

We can’t really do this directly since we only want to construct ppn, unq for finite n.
Hence, we will instead impose:

Lj

hn
“ µn « µ.

– We have a similar condition for matching the volatility:
VarLj

hn
“ �2

n « �2
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L18-S04The CRR setup, I

Our CRR conditions require statistics of the inter-period log-returns, e.g.,

Lj , VarLj .

Of course, we know how to compute these: We have,

Lj “ log dn ` Xj log
un

dn
“ ´ log un ` 2Xj log un,

where Xj „ Bernoullippnq.

Therefore:

Lj “ p2p ´ 1q log un, VarLj “ 4pnp1 ´ pnqplog unq2
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L18-S05The CRR setup, II

Therefore, our CRR constraints are the following:

dn “ 1

un

µ “ 2p ´ 1

hn
log un

�2 “ 4pnp1 ´ pnq
hn

plog unq2.

where we have replaced some instances of “«” with ““”.

After some computations and approximations, we arrive at the following real-world CRR
equations:

pn « 1

2

´
1 ` µ

�

a
hn

¯
, un « expp�

a
hnq, dn « expp´�

a
hnq.
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L18-S06The real-world CRR tree

A “real-world” CRR tree/model is therefore constructed in the following way:
– Historical data is used to compute an asset’s continuous-time drift and volatility pµ,�q
– The terminal time T and number of periods n is determined. hn “ T {n.
– The real-world CRR equations are used to set ppn, un, dnq:

pn “ 1

2

´
1 ` µ

�

a
hn

¯
, un “ expp�

a
hnq, dn “ expp´�

a
hnq.
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L18-S07Let’s play a game

Which is the simulated price?

MSFT
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L18-S08Let’s play a game, II

Which prices are simulated?

GE

Airbus

Lockheed
Martin

Coca
cola
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L18-S09Some CRR properties, I

Some initial observations about the tuple ppn, un, dnq of the real-world CRR model:
– Because un “ expp�?

hnq, and hn “ T {n, then

lim
nÒ8

un “ 1,

and similarly for dn “ 1{un.
I.e., the uptick and downtick geometric rates become very close to unity for large n.

– Because pn “ 1
2

´
1 ` µ

�

?
h

¯
, then

lim
nÒ8

pn “ 1

2
,

so that for large n the CRR tree tends toward fair coin flips.
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L18-S10Some CRR properties, II

What kind of statistics does Sn have under this model? We have,

Sn “ S0e
L “ S0 expp

nÿ

j“1

Ljq.

We’ve seen that

Sn “ S0 ppnun ` p1 ´ pnqdnqn ,

and we have the real-world CRR equations:

pn “ 1

2

´
1 ` µ

�

a
hn

¯
, un “ expp�

a
hnq, dn “ expp´�

a
hnq.

These allow us to conclude:

lim
nÒ8

Sn “ S0 exp

„ˆ
µ ` �2

2

˙
T

⇢
,

i.e., there is a well-defined limit independent of the discretization parameters n and hn.
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