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The tree pricing model L16-502

We've seen the basic anatomy of the binomial pricing model: Given (p,u,d), then,

‘gr'(,\_‘ 'S( gJ a. u, with probability p
= 11, 7 R d, with probability 1 —p

where S; = S(t;) and G is the gross return rate.
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The tree pricing model L16-502

We've seen the basic anatomy of the binomial pricing model: Given (p,u,d), then,
Ci=(n. é
AL .J*" J . _/ W with probability p

7\ d, with probability 1 —p

where S; = S(t;) and G is the gross return rate. In this model, it turns out that log
returns are particularly convenient to work with:

S n . o7
n L I Z L, L = { logu, with probability p
j=1

S0 logd, with probability 1 — p
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Our (p,u,d) assumptions L16-503

Recall that we've always assumed,
— pE (07 1)
—d<l<u

The p € (0,1) assumption is reasonable: if p = 0,1, then the model is not random,
implying that there is no uncertainty about the future.
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Our (p,u,d) assumptions L16-503

Recall that we've always assumed,
— pE (07 1)
—d<l<u

The p € (0,1) assumption is reasonable: if p = 0,1, then the model is not random,
implying that there is no uncertainty about the future.

The assumption that u > d is just for convenience: if u < d, then consider another triple
(q,f& d) with,

1—
d
U

Q) &
I

<u

Then the (p,u,d) is equivalent in distribution to the (g, 4, d) model, but the latter satisfies
u > d.

Hence, we assume u > d without loss of generality.
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Our (p,u,d) assumptions L16-503

Recall that we've always assumed,
— pE (07 1)
—d<l<u

The p € (0,1) assumption is reasonable: if p = 0,1, then the model is not random,
implying that there is no uncertainty about the future.

The assumption that u > d is just for convenience: if u < d, then consider another triple
(g, a,d) with,

-—qg=1-—p

- u=d
—d=u
Then the (p,u,d) is equivalent in distribution to the (g, 4, d) model, but the latter satisfies
u > d.

<u

Hence, we assume u > d without loss of generality.

Finally, the fact that 1 must be sandwiched between d and u is a requirement to ensure a
no-arbitrage setup:
— If d > 1, then Pr(S1 = Sp) = 1, and Pr(S1 > Sp) = p > 0, ensuring an arbitrage by
holding a long position in S
— If u < 1, then Pr(S1 < So) =1, and Pr(S1 < So) = p > 0, ensuring an arbitrage by
holding a short position in S.
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Risk neutrality L16-504

There is one more concept that will be useful for us to employ in modeling investors:
Suppose | seek to sell you an asset today at a price Sp.

If you have a probabilistic model for the future trajectory of S(t), and if your model
predicts [ES(t) < Sp, then you have limited incentive purchase this asset.

On the other hand, if your model (correctly!) predicts ES(t) > Sp, then there is
opportunity for arbitrage, assuming you have unlimited capital to invest.

In such a case, we assume that another saavy investor would have already recognized this
and removed the arbitrage opportunity through exploitation; hence your model is unlikely
to be accurate.
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Risk neutrality L16-504

There is one more concept that will be useful for us to employ in modeling investors:
Suppose | seek to sell you an asset today at a price Sp.

If you have a probabilistic model for the future trajectory of S(t), and if your model
predicts [ES(t) < Sp, then you have limited incentive purchase this asset.

On the other hand, if your model (correctly!) predicts ES(t) > Sp, then there is
opportunity for arbitrage, assuming you have unlimited capital to invest.

In such a case, we assume that another saavy investor would have already recognized this
and removed the arbitrage opportunity through exploitation; hence your model is unlikely
to be accurate.

Based on these scenarios, then a reasonable assumption on a valid model is that
ES(t) = 9S0.

A probabilistic model satisfying this assumption is said to be risk neutral.

More formally, a risk-neutral probability measure satisfies the above assumption.
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Risk neutrality in practice L16-505

Note that for our tree model, we have
ES1 = SoEGT = So (pu + (1 — p)d) ,

The risk-neutrality requirement is that ES] = Sp.

Solper ([+424) 29

P(u~d)’~ [- )
= Bb = pe=

v
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Risk neutrality in practice L16-505

Note that for our tree model, we have
ES1 = SoEGT = So (pu + (1 — p)d) ;
The risk-neutrality requirement is that ES] = Sp.

Hence, in order for this single-period jump to be risk-neutral, then we require,

_1-d
p_u—d‘

This prescribes p in terms of the single-period upward/downward factors.
(And note that assuming d < 1 < u implies that p € (0,1).)
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Risk neutrality in practice L16-505

Note that for our tree model, we have
ES1 = SoEGT = So (pu + (1 — p)d) ;
The risk-neutrality requirement is that ES] = Sp.

Hence, in order for this single-period jump to be risk-neutral, then we require,

_1-d
p_u—d‘

This prescribes p in terms of the single-period upward/downward factors.
(And note that assuming d < 1 < u implies that p € (0,1).)

This one-period result extends to multiple periods through induction:

And again if p is as given by the formula above, then ES,,+1 = [ES, = So.
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Some real-world considerations, | L16-506

Such a model has limitations — e.g., in practice one would not be interested in the security
if the average return was 0.

In practice, we assume an average return rate m (in units matching those of t).

The idea: we should discount future values based on this return rate.
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Some real-world considerations, | L16-506

Such a model has limitations — e.g., in practice one would not be interested in the security
if the average return was 0.

In practice, we assume an average return rate m (in units matching those of t).

The idea: we should discount future values based on this return rate.

Hence, assuming compounding corresponding to the number of periods in the model, then
the present value of S is,
- |

T =T/n e |
PV(S1) = S4 (1 + —m> A 6 (1 4+ mAt)
n

so that the risk-neutral value of p in this case is,

(I +mAt)—d
B u—d

p
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Some real-world considerations, |l L16-507

Another practicality worth building in: typically the asset S is a stock.
Many stocks pay regular dividends, corresponding to a rate q.

A stock that pays dividends at rate g should be discounted accordingly:

Tr T _T/n
PV(S1) = S (1 2 —q) A G (1 4 (m— q)AY),

n n
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Some real-world considerations, |l L16-507

Another practicality worth building in: typically the asset S is a stock.
Many stocks pay regular dividends, corresponding to a rate q.

A stock that pays dividends at rate g should be discounted accordingly:

T T =T /n
PV(S)) = S (1 c I —q) AT G (1 + (m— q)AE),

n n

The risk-neutral value of p in this case is,

(14 (m—q)At) —d
u—d

p =
Of course one expects that m > ¢ in order for the stock to be attractive to investors.

Note also that we must have

U
At < :
m —q

in order for this to be a valid model (p < 1).
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Options pricing L16-508

Although we have not really discussed options too much, one of the main applications of
this model is in the pricing of options.

For simplicity, let's consider a (“European”) call option:

— At t = 0, we are buying the right (not the requirement) to purchase a (say single)
share of S. (“call”)

— We can exercise this option only at time t = T' to purchase the stock at strike price
K. (“European”)

The question: what price (premium) should we be willing to pay for this option?
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Options pricing L16-508

Although we have not really discussed options too much, one of the main applications of
this model is in the pricing of options.

For simplicity, let's consider a (“European”) call option:

— At t = 0, we are buying the right (not the requirement) to purchase a (say single)
share of S. (“call”)

— We can exercise this option only at time t = T' to purchase the stock at strike price
K. (“European”)

The question: what price (premium) should we be willing to pay for this option?

Here is the basic logic of the options pricing model:
— We'll generate a probabilistic model for all time-T" outcomes of the options price.
— We'll propagate these prices backward in time through a pricing model.

— The resulting time-0 price (a deterministic number) will be our modeled security price.
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Options pricing L16-508

Although we have not really discussed options too much, one of the main applications of
this model is in the pricing of options.

For simplicity, let's consider a (“European”) call option:

— At t = 0, we are buying the right (not the requirement) to purchase a (say single)
share of S. (“call”)

— We can exercise this option only at time t = T' to purchase the stock at strike price
K. (“European”)

The question: what price (premium) should we be willing to pay for this option?

Here is the basic logic of the options pricing model:

— We'll generate a probabilistic model for all time-T" outcomes of the options price.

— We'll propagate these prices backward in time through a pricing model.

— The resulting time-0 price (a deterministic number) will be our modeled security price.
We'll assume that the following information is available:

— stock volatility (typically through historical data)

— a risk-free rate r, and a dividend rate ¢
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Options pricing, step 1: terminal time prices L16-509

Recall that the period-n outcomes of the binomial model are:
Sou™d®, Spu""tdt ..., Sould™ !, Sould".

We'll assume that (u, d) are given and prescribed.
(We'll soon see that a common model is to assign (u, d) based on the historic volatility of

the stock.)
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Options pricing, step 1: terminal time prices L16-509

Recall that the period-n outcomes of the binomial model are:
Sou™d®, Spu""tdt ..., Sould™ !, Sould".

We'll assume that (u, d) are given and prescribed.
(We'll soon see that a common model is to assign (u, d) based on the historic volatility of
the stock.)

The prices {gn,j }i—q, with

~

Sy ;= Soudd"

are our modeled terminal prices of the stock.
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Options pricing, step 1: terminal time prices L16-509

Recall that the period-n outcomes of the binomial model are:
Sou™d®, Spu""tdt ..., Sould™ !, Sould".

We'll assume that (u, d) are given and prescribed.
(We'll soon see that a common model is to assign (u, d) based on the historic volatility of
the stock.)

The prices {gn,j }i—q, with

~

Sn,j = Soud" 7,
are our modeled terminal prices of the stock.

Note that the time-T value of the call option is the value of the call relative to the strike
~—

price: _
Gi K
— Sn,; = max{0, K =5, ;}
8.k
|.e., the stock has vaIueMj should this difference be positive, but is 0 otherwise as
we simply choose not to exercise the option.
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Options prlcmg step 2: back-propagation under a risk-neutral lM@x1le

We know values at perl }n How might be propoagate these prices back to time n — 17

There are n values {Sn 1 ]} that we must determine. .<
Using the binomial tree, we use risk neutrality: 2’
— We define a risk-neutral measure by identifying p appropriately: o :
r ]
(L4 (n— gAY —d na A

u—d

— The value Sn 1,7 should be the expected value of the time-n security under the

risk-neutral measure: ﬁn_l : [‘B[ -Cu ‘ S ]
‘IJ
Sn—1,j = pSn,j + (1 —P)Sn,j+1, J=0,... ,?/W’]
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Options pricing, step 2: back-propagation under a risk-neutral lM@x1le

We know values at period n. How might be propoagate these prices back to time n — 17
There are n values {S’n_l,j };7,:—01 that we must determine.

Using the binomial tree, we use risk neutrality:

— We define a risk-neutral measure by identifying p appropriately:

(I +(m—q)At) —d
B u—d

— The value §n_1,j should be the expected value of the time-n security under the
risk-neutral measure:

Sn—1,j = PSn,j + (1 —p)Sn,j+1, J=0,...,n

— We should discount by the risk-free rate:

Sn—l,j — e—?“AtS

n—1,7-
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Options pricing, step 2: back-propagation under a risk-neutral lM@x1le

We know values at period n. How might be propoagate these prices back to time n — 17
There are n values {S’n_l,j };7,:—01 that we must determine.

Using the binomial tree, we use risk neutrality:

— We define a risk-neutral measure by identifying p appropriately:

(I +(m—q)At) —d
B u—d

— The value §n_1,j should be the expected value of the time-n security under the
risk-neutral measure:

Sn—1,j = PSn,j + (1 —p)Sn,j+1, J=0,...,n

— We should discount by the risk-free rate:

N

Sn—l,j = G_TAtS

n—1,7-

This results in values {gn_l,j }?:_01 that are modeled prices of the option value at time
n — 1.
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Options pricing, step 3: iterate L16-511

One sequentially moves from time index n+—»n—1—»n—2---+—1+— 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should
be willing to pay for the option.
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Options pricing, step 3: iterate L16-511

One sequentially moves from time index n+—»n—1—»n—2---+—1+— 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should
be willing to pay for the option.

An extra detail: different types of options have different rules of exercise.

In American options, one can exercise the option at any time up until time 7.

Under an American option, the risk-neutral expectation should be modified not only by a
present value discount, but also by the possibility of exercise:

— At period k, compute the standard binomial tree value of the stock at the current
period (call this say Si ;). _ L
’ S\M,"j “ go U A J
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Options pricing, step 3: iterate L16-511

One sequentially moves from time index n+—»n—1—»n—2---+—1+— 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should
be willing to pay for the option.

An extra detail: different types of options have different rules of exercise.

In American options, one can exercise the option at any time up until time 7.

Under an American option, the risk-neutral expectation should be modified not only by a
present value discount, but also by the possibility of exercise:

— At period k, compute the standard binomial tree value of the stock at the current
period (call this say Sy, ;). Seim €
— The “exercise value” is maX{O,i(_i—,S-;(,j}.
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Options pricing, step 3: iterate L16-511
One sequentially moves from time index n+—»n—1—»n—2---+—1+— 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should
be willing to pay for the option.

An extra detail: different types of options have different rules of exercise.
In American options, one can exercise the option at any time up until time 7.

Under an American option, the risk-neutral expectation should be modified not only by a
present value discount, but also by the possibility of exercise:

— At period k, compute the standard binomial tree value of the stock at the current
period (call this say Sy, ;). 9’<3"k

— The “exercise value” is maX{O,_K/’S'];’j}.

— Replace §k,j computed as before (the “Binomial value”) witth the maximum of the
exercise and binomial value: -
§u0 I

§k,j «— max{gk,j, max{0, Kygk/,j}}
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Options pricing, step 3: iterate L16-511
One sequentially moves from time index n+—»n—1—»n—2---+—1+— 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should
be willing to pay for the option.

An extra detail: different types of options have different rules of exercise.
In American options, one can exercise the option at any time up until time 7.

Under an American option, the risk-neutral expectation should be modified not only by a
present value discount, but also by the possibility of exercise:

— At period k, compute the standard binomial tree value of the stock at the current
period (call this say Sk ;). (g ,(
)
: y o J
— The “exercise value” is max{0, K—5%, ; }.

— Replace §k,j computed as before (the “Binomial value”) witth the maximum of the
exercise and binomial value:
Siey 14

§k,j «— max{gk,j, max{0, Iﬁ;Sﬁ,j}}
(‘()m{:l%b]b)

The idea is that if exercise is possible at a certain time, we should model it.
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