Math 5760/6890: Introduction to Mathematical Finance Binomidyal Pricing Models

See Petters and Dong 2016, Section 5.1

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

October 24, 2023

The tree pricing model
The overall goal:
Given a security's time-0 price $S(0)$, construct a probabilistic model for $S(t), t>0$.
We do this with discrete time steps:

- Divide $[0, T]$ into $n \in \mathbb{N}$ equally sized intervals, $\left[t_{j}, t_{j+1}\right]$ for $j=0, \ldots, N$.
- $t_{j}=j h$ with $h=T / n$
- Let $S_{j}=S\left(t_{j}\right)$
- Model $S_{j} \mapsto S_{j+1}$ as a multiplicative process:

$$
S_{j+1}=G_{j+1} S_{j}= \begin{cases}u S_{n}, & \text { with probability } p \\ d S_{n}, & \text { with probability } 1-p\end{cases}
$$

- We assume (p, u, d) satisfies $p \in(0,1)$, and $d<1<u$.

The tree pricing model
The overall goal:
Given a security's time-0 price $S(0)$, construct a probabilistic model for $S(t), t>0$.
We do this with discrete time steps:

- Divide $[0, T]$ into $n \in \mathbb{N}$ equally sized intervals, $\left[t_{j}, t_{j+1}\right]$ for $j=0, \ldots, N$.
- $t_{j}=j h$ with $h=T / n$
- Let $S_{j}=S\left(t_{j}\right)$
- Model $S_{j} \mapsto S_{j+1}$ as a multiplicative process:

$$
S_{j+1}=G_{j+1} S_{j}= \begin{cases}u S_{n}, & \text { with probability } p \\ d S_{n}, & \text { with probability } 1-p\end{cases}
$$

- We assume (p, u, d) satisfies $p \in(0,1)$, and $d<1<u$.
- The behavior over the entire period corresponds to an accumulation of multiplicative gross returns G_{j} :

$$
\log =\log _{e}
$$

$$
S_{n}=S_{0} \prod_{j=1}^{n} G_{j}, \quad L:=\log \frac{S_{n}}{S_{0}}=\sum_{j=1}^{n} \log G_{j}=\sum_{j=1}^{n} L_{j}
$$

- The random variables $\left\{G_{j}\right\}_{j=1}^{n}$ are iid (shifted) Bernoulli random variables (Same for $\left\{L_{j}\right\}_{j=1}^{n}$.)
- Today: we'll describe more details about this model.

A digression: Binomial random variables

Let $X \sim \operatorname{Bernoulli}(p)$, and consider n iid copies of $X,\left\{X_{j}\right\}_{j=1}^{n}$.
The random variable X satisfies,

$$
X= \begin{cases}1, & \text { with probability } p \\ 0, & \text { with probability } 1-p\end{cases}
$$

X is the outcome of a (binary) coin toss, where the outcome is biased if $p \neq 1 / 2$.

A digression: Binomial random variables
Let $X \sim \operatorname{Bernoulli}(p)$, and consider n iid copies of $X,\left\{X_{j}\right\}_{j=1}^{n}$.
The random variable X satisfies,

$$
X= \begin{cases}1, & \text { with probability } p \\ 0, & \text { with probability } 1-p\end{cases}
$$

X is the outcome of a (binary) coin toss, where the outcome is biased if $p \neq 1 / 2$. Of particular interest in several areas of probability and statistics is the random variable,

$$
Y=\sum_{j=1}^{n} X_{j}
$$

which counts the number of +1 outcomes (say "heads" outcomes) of the X_{j}.

A digression: Binomial random variables
Let $X \sim \operatorname{Bernoulli}(p)$, and consider n id copies of $X,\left\{X_{j}\right\}_{j=1}^{n}$.
The random variable X satisfies,

$$
X= \begin{cases}1, & \text { with probability } p \\ 0, & \text { with probability } 1-p\end{cases}
$$

X is the outcome of a (binary) coin toss, where the outcome is biased if $p \neq 1 / 2$. Of particular interest in several areas of probability and statistics is the random variable,

$$
Y=\sum_{j=1}^{n} X_{j}
$$

which counts the number of +1 outcomes (say "heads" outcomes) of the X_{j}.

Evidently, Y is a discrete random variable, with outcomes $\{0,1, \ldots, n\}$. Y is called a Binomial (n, p) random variable, and it has a Binomial distribution.

A digression: Binomial random variables
Let $X \sim \operatorname{Bernoulli}(p)$, and consider n iid copies of $X,\left\{X_{j}\right\}_{j=1}^{n}$.
The random variable X satisfies,

$$
X= \begin{cases}1, & \text { with probability } p \\ 0, & \text { with probability } 1-p\end{cases}
$$

X is the outcome of a (binary) coin toss, where the outcome is biased if $p \neq 1 / 2$. Of particular interest in several areas of probability and statistics is the random variable,

$$
Y=\sum_{j=1}^{n} X_{j}
$$

which counts the number of +1 outcomes (say "heads" outcomes) of the X_{j}.

Evidently, Y is a discrete random variable, with outcomes $\{0,1, \ldots, n\}$. Y is called a Binomial (n, p) random variable, and it has a Binomial distribution.

Some simple first- and second-order statistics are immediately computable:

$$
\left.\mathbb{E} Y=\sum_{j=1}^{n} \mathbb{E} X_{j}=\sum_{j=1}^{n} p=n p, \quad \operatorname{Var} Y \stackrel{(*)}{=} \sum_{j=1}^{n} \operatorname{Var} X_{j}{ }_{j}^{(/ /} p\right) n p(1-p)
$$

where $(*)$ uses the fact that the variance of the sum of independent random variables is the sum of their variances.

The Binomial distribution
The distribution (mass function) of Y is,

$$
\begin{array}{cl}
p_{Y}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, & 0 \leqslant k \leqslant n \\
\binom{n}{k}=\frac{n!}{k!(n-k)!}, 0!=1
\end{array}
$$

The Binomial distribution
The distribution (mass function) of Y is,

$$
p_{Y}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad 0 \leqslant k \leqslant n
$$

This is a valid mass function due to the Binomial Theorem:

$$
\begin{aligned}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \quad \Longrightarrow \quad \sum_{k=0}^{n} p_{Y}(k) & =\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =(p+(1-p))^{n}=1
\end{aligned}
$$

If $Y \sim \operatorname{Binomial}(n, p)$, the quantity $p_{Y}(k)$ is the probability that we observe exactly k "heads" outcomes from n independent coin flips biased to land on heads with probability p.

The Binomial distribution mass function

$$
\text { If } y=n p
$$

Shifting the Binomial distribution

The n Bernoulli trials need not have outcome +1 or 0 .
Suppose that the Bernoulli-type random variable \tilde{X} has distribution,

$$
\tilde{X}= \begin{cases}b, & \text { with probability } p \\ a, & \text { with probability } 1-p\end{cases}
$$

for any numbers a, b. Then note that if we write

$$
\tilde{X}=(b-a) X+a,
$$

then $X \sim \operatorname{Bernoulli}(p)$.

Shifting the Binomial distribution

The n Bernoulli trials need not have outcome +1 or 0 .
Suppose that the Bernoulli-type random variable \tilde{X} has distribution,

$$
\tilde{X}= \begin{cases}b, & \text { with probability } p \\ a, & \text { with probability } 1-p\end{cases}
$$

for any numbers a, b. Then note that if we write

$$
\tilde{X}=(b-a) X+a,
$$

then $X \sim \operatorname{Bernoulli}(p)$.
Then if we consider a sum of n iid copies of \tilde{X} :

$$
\widetilde{Y}:=\sum_{j=1}^{n} \widetilde{X}_{j}, \quad \tilde{X}_{j} \stackrel{\mathrm{iid}}{\sim} \widetilde{X}
$$

then we observe that,

$$
\tilde{Y}=n a+(b-a) Y,
$$

where $Y \sim \operatorname{Binomial}(n, p)$ is a ("standard") Binomial random variable.

Shifting the Binomial distribution

The n Bernoulli trials need not have outcome +1 or 0 .
Suppose that the Bernoulli-type random variable \tilde{X} has distribution,

$$
\tilde{X}= \begin{cases}b, & \text { with probability } p \\ a, & \text { with probability } 1-p\end{cases}
$$

for any numbers a, b. Then note that if we write

$$
\tilde{X}=(b-a) X+a,
$$

then $X \sim \operatorname{Bernoulli}(p)$.
Then if we consider a sum of n iid copies of \tilde{X} :

$$
\widetilde{Y}:=\sum_{j=1}^{n} \widetilde{X}_{j}, \quad \tilde{X}_{j} \stackrel{\mathrm{iid}}{\sim} \widetilde{X}
$$

then we observe that,

$$
\tilde{Y}=n a+(b-a) Y,
$$

where $Y \sim \operatorname{Binomial}(n, p)$ is a ("standard") Binomial random variable.
Hence: iid sums of scaled/shifted Bernoulli random variables are just scaled/shifted Binomial random variables.

Back to pricing

Recall that the log-return in our security model satisfies,

$$
L=\sum_{j=1}^{n} L_{j},
$$

with L_{j} id, having distribution,

$$
\begin{aligned}
& L_{j}= \begin{cases}\log u, & \text { with probability } p \\
\log d, & \text { with probability } 1-p\end{cases} \\
& \text { Note: } \quad \frac{L_{j}-\log d}{\left.(y)_{1}\right)} \text { is Bernoulli(}(\rho)
\end{aligned}
$$

Back to pricing

Recall that the log-return in our security model satisfies,

$$
L=\sum_{j=1}^{n} L_{j}
$$

with L_{j} iid, having distribution,

$$
L_{j}= \begin{cases}\log u, & \text { with probability } p \\ \log d, & \text { with probability } 1-p\end{cases}
$$

Hence, we essentially know everything about L :

- L_{j} is a shifted $\operatorname{Bernoulli}(p)$ random variable. Precisely, $L_{j}=\log d+X_{j} \log \frac{u}{d}$, where $X_{j} \sim \operatorname{Bernoulli}(p)$.
- L is a shifted $\operatorname{Binomial}(n, p)$ random variable: $L=n \log d+Y \log \frac{u}{d}$, where $Y \sim \operatorname{Binomial}(n, p)$.
(This is essentially why this is called the Binomial pricing model.)

Back to pricing

Recall that the log-return in our security model satisfies,

$$
L=\sum_{j=1}^{n} L_{j}
$$

with L_{j} iid, having distribution,

$$
L_{j}= \begin{cases}\log u, & \text { with probability } p \\ \log d, & \text { with probability } 1-p\end{cases}
$$

Hence, we essentially know everything about L :

- L_{j} is a shifted $\operatorname{Bernoulli}(p)$ random variable. Precisely, $L_{j}=\log d+X_{j} \log \frac{u}{d}$, where $X_{j} \sim \operatorname{Bernoulli}(p)$.
- L is a shifted $\operatorname{Binomial}(n, p)$ random variable: $L=n \log d+Y \log \frac{u}{d}$, where $Y \sim \operatorname{Binomial}(n, p)$.
(This is essentially why this is called the Binomial pricing model.)
Some caveats: S_{n} is not a Binomial random variable. Recall that $S_{n}=S_{0} \exp L$.
The problem is that e^{L} is not Binomial (although its outcomes have the same probabilities as a Binomial random variable, they are not equispaced outcomes).

Some examples
Although S_{n} is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example
Consider a 10-period Binomial pricing model, with $(p, u, d)=(0.6,1.1,0.9)$.

- Compute the mean and variance of the terminal-time log-return.

$$
\begin{aligned}
L=\sum_{j=1}^{\omega 0} L_{j} & \left.L=10 \cdot \log d+\log \left(\frac{u}{d}\right) Y, \quad \varphi \sim \operatorname{Binonda}\right)(10,0.6) \\
\mathbb{E} L & =10 \log d+\log \left(\frac{u}{d}\right) \underbrace{}_{n p}=10 \cdot 0.6=6 \\
& =10 \log 0.9+6 \log \left(\frac{1.1}{0}\right) \quad \operatorname{np}(1-p)=6.0 .4=2.4 \\
\operatorname{Var} L & =\operatorname{Var}\left(10 \log d+\log \left(\frac{u}{d}\right) V\right)=(\log (4 / d))^{2} \operatorname{Var} Y=2.4\left(\log \frac{1.1}{0.9}\right)^{2}
\end{aligned}
$$

Some examples
Although S_{n} is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example
Consider a 10 -period Binomial pricing model, with $(p, u, d)=(0.6,1.1,0.9)$.

- Compute the mean and variance of the terminal-time log-return.
- What is the expected value of S_{10} ?

$$
\begin{aligned}
& \text { What is the expected value of } S_{10} \text { ? } \\
& S_{10}=\prod_{j=1}^{10} G_{j} \rightleftharpoons S_{10}=S_{0} \mathbb{F} \prod_{j=1}^{10} G_{j}
\end{aligned}
$$

Recall: if U, V or ingenendeat RV', then

$$
\begin{aligned}
& \mathbb{E}(U V)=(\mathbb{E} M)(\mathbb{E} V) \\
& \Rightarrow \mathbb{E}_{2} \prod_{j=1}^{10} G_{j}=\prod_{j=1}^{10} \mathbb{E} G_{j}=\prod_{j=1}^{10}(p u+(1-p) d)=(0.66+0.36)^{10} \\
&=(1.02)^{100} \Rightarrow \mathbb{E} S_{10}=S_{0}(1.02)^{10}
\end{aligned}
$$

Some examples

Although S_{n} is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example

Consider a 10-period Binomial pricing model, with $(p, u, d)=(0.6,1.1,0.9)$.

- Compute the mean and variance of the terminal-time log-return.
- What is the expected value of S_{10} ?
- What is the probability that $S_{10} \geqslant S_{0}$?

Shave price outcomes:
$d^{10} S_{0}, d^{9} u S_{1}, d^{8} u^{2} S_{0} \ldots, d^{1} u^{9} S_{0}, u^{0} S_{0}$
\Rightarrow for which k values is $u^{k} d^{n-k} \geq 1$?

$$
k 25: u^{5} d^{5} \approx 0.95, \quad k=6: u^{6} d^{4}=1.16
$$

$\Rightarrow u^{k} d^{16-k} \geq 1$ when $k \geq 6$

$$
\begin{aligned}
& \operatorname{Pr}\left(\prod_{j=1}^{10} G_{j} \geq 1\right)=\operatorname{Pr}(y \geq 6) \text { where } Y \sim \operatorname{Binomial}(10,0,6) \\
& \sum_{k=6}^{110}\binom{10}{k} p^{k}(1-p)^{10-k} \\
& \sum_{k=6}^{11}\binom{10}{k} 0.6^{k} 0 . y^{k y-k} \\
& G=\binom{10}{6} 0.6^{6} 0.4^{4}+\binom{10}{7} 0.6^{7} 0.4^{3}+\binom{10}{8} 0.6^{8} 0.4^{2} \\
& +\binom{10}{9} 0.6^{9} 0,4^{1}+\binom{10}{10} 0.6^{10}=\begin{array}{l}
>112 \\
>12
\end{array} \\
& <1 / 2 \\
& h:=\prod_{j=1}^{H 0} G_{j}=\left\{\begin{array}{lll}
u^{10} & w / \operatorname{mob} & p^{10}\binom{10}{10} \leftarrow \operatorname{Pr}(y=10) \\
u^{9} d & w / \operatorname{mon} & p^{9}(1-p)\binom{10}{9} \leftarrow \operatorname{Pr}(y=9) \\
u^{p} d^{2} & w / \operatorname{mon} & p^{p}(1-p)^{2}\binom{10}{8} \leftarrow \operatorname{Pr}(y=8) \\
1 & &
\end{array}\right.
\end{aligned}
$$

$P_{y}(y)_{\uparrow}$

$P_{s}(s)$

Some examples

Although S_{n} is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example

Consider a 10-period Binomial pricing model, with $(p, u, d)=(0.6,1.1,0.9)$.

- Compute the mean and variance of the terminal-time log-return.
- What is the expected value of S_{10} ?
- What is the probability that $S_{10} \geqslant S_{0}$?
- What is the probability that $S_{5} \geqslant S_{0}$?

Same as before, but $n=S^{\infty}$
for what k is $u^{k} d^{5-k} \geq 1$?

$$
k=3,4,5 \Rightarrow \operatorname{Prob}\left(S_{5} 2 S_{0}\right)=\sum_{k=3}^{5}\binom{5}{k} 0.6^{k} 0.4^{5-k}
$$

Some examples

Although S_{n} is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example

Consider a 10-period Binomial pricing model, with $(p, u, d)=(0.6,1.1,0.9)$.

- Compute the mean and variance of the terminal-time log-return.
- What is the expected value of S_{10} ?
- What is the probability that $S_{10} \geqslant S_{0}$?
- What is the probability that $S_{5} \geqslant S_{0}$?
- Suppose $S_{5}=S_{0}(1.1)^{5}$. What is the distribution of S_{10} conditioned on this outcome?

Some final observations

The process we have defined and investigated has some useful properties:
There are 2^{n} possible pricing trajectories that the model can take. (2 options at each time.)
But there are only $j+1$ possible outcomes at time t_{j} : the security price S_{j} is given by,

$$
S_{j}=S_{0} \prod_{q=1}^{j} G_{j}=S_{0} u^{Y_{j}} d^{j-Y_{j}}
$$

where Y_{j} is the cumulative number of "heads" realizations in the first j steps:

$$
Y_{j}=\sum_{q=1}^{j} X_{q}
$$

Since Y_{j} has exactly $j+1$ possible outcomes, then S_{j}, whose randomness depends explicitly and only on Y_{j}, has exactly $j+1$ possible outcomes.

Some final observations

The process we have defined and investigated has some useful properties:
There are 2^{n} possible pricing trajectories that the model can take. (2 options at each time.)
But there are only $j+1$ possible outcomes at time t_{j} : the security price S_{j} is given by,

$$
S_{j}=S_{0} \prod_{q=1}^{j} G_{j}=S_{0} u^{Y_{j}} d^{j-Y_{j}}
$$

where Y_{j} is the cumulative number of "heads" realizations in the first j steps:

$$
Y_{j}=\sum_{q=1}^{j} X_{q} .
$$

Since Y_{j} has exactly $j+1$ possible outcomes, then S_{j}, whose randomness depends explicitly and only on Y_{j}, has exactly $j+1$ possible outcomes.

Related to the above, the tree is recombining, meaning that there are trajectories that reach the same state using different pathways. In particular,

- outcome $\left(G_{1}, G_{2}\right)=(u, d)$
- outcome $\left(G_{1}, G_{2}\right)=(d, u)$
yield the same security price $S_{2}=u d S_{0}$.

Some final observations

The process we have defined and investigated has some useful properties:
There are 2^{n} possible pricing trajectories that the model can take. (2 options at each time.)
But there are only $j+1$ possible outcomes at time t_{j} : the security price S_{j} is given by,

$$
S_{j}=S_{0} \prod_{q=1}^{j} G_{j}=S_{0} u^{Y_{j}} d^{j-Y_{j}}
$$

where Y_{j} is the cumulative number of "heads" realizations in the first j steps:

$$
Y_{j}=\sum_{q=1}^{j} X_{q} .
$$

Since Y_{j} has exactly $j+1$ possible outcomes, then S_{j}, whose randomness depends explicitly and only on Y_{j}, has exactly $j+1$ possible outcomes.

Related to the above, the tree is recombining, meaning that there are trajectories that reach the same state using different pathways. In particular,

- outcome $\left(G_{1}, G_{2}\right)=(u, d)$
- outcome $\left(G_{1}, G_{2}\right)=(d, u)$
yield the same security price $S_{2}=u d S_{0}$.
As we saw in the previous example, this is a Markovian process: the possibilities at time t_{j+1} can be deduced entirely from the state of things at time t_{j}.

Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition. Springer. ISBN: 978-1-4939-3783-7.

