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L13-S02Portfolio risk
Until now, our definition for risk has been the standard deviation/variance (“spread”) of a
return rate.

This is, necessarily, a deceptive measure of the colloquial notion of “risk”.
For example: sometimes there is a clear preference between two options with identical
mean and variance.
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L13-S03“Risk” of random variables

The core of our questions regarding risk can be reduced to:

Let R be a random variable: what is a good quantitative measure of values of R away from
its mean?

This depends quite a bit on how one qualitatively defines risk.

Example
Let R1 and R2 be discrete random variables with mass functions given by,

pR1 prq “
$
&

%

1
2 , r “ 1,
1
4 , r “ 0,
1
4 , r “ 2.

pR2 prq “
$
&

%

3
4 , r “ 1,
1
8 , r “ ´1,
1
8 , r “ 3.

Would you prefer a portfolio with return R1 or R2?
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L13-S04Measures of risk

There isn’t a single universally useful way to measure risk, but there are many options.

These options essentially boil down to what one considers “important” in risk.
– Sharpe ratio
– Sortino ratio
– Treynor ratio
– The (Jensen’s) alpha
– C/VaR

–
...

None of these metrics is always “better” than another, but many have dis/advantages
compared to others.
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L13-S05Ratios
To discuss some risk metrics, let’s review some notation:

– R: the (random) return rate of a security (which could be a portfolio)
– r: the deterministic capital market risk-free rate
– RM : the market portfolio
– pµ,�2q: p R,VarRq
– pµM ,�2

M q: p RM ,VarRM q
– �: ⇢pR,RM q �

�M
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The first ratio we’ll consider is the Sharpe ratio, defined as,

ShpRq :“ µ ´ r

�

If the risk-free rate r is not determnistic, then the denominator should be the standard
deviation of R ´ r.

In most simplified cases, this ratio is the slope of the security’s capital allocation line.
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A second ratio is the Sortino ratio:

SopRq :“ µ ´ t

�´ptq

Above, t is a target return (e.g., the risk-free rate r). The quantity �2
´ptq is the

semivariance, or the “downside deviation” from the target t.
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Yet another option: the Treynor ratio:

TrpRq :“ µ ´ r

�

Recall that the � metric measures volatility relative to how R tracks with the market: such
market-related risk is called systematic risk. Hence, the Treynor ratio is a reward-risk ratio,
where “market-related risk” is used.
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L13-S06The “alpha”

Yet another measure of risk is the “alpha” of a security, which measures premium relative
to the capital asset pricing model.

For example, “Jensen’s alpha” is defined as,

↵ “ pµ ´ rq ´ � pµM ´ rq ,

where the right-hand side is zero in theory, but not in practice.

Again, this is a return relative to the market.
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L13-S07Value at Risk

A random variable L has a cumulative distribution function:

FLp`q “ P pL § `q, FL : Ñ r0, 1s

The quantile function for L is the functional inverse of FL:

QLppq :“ F´1
L ppq “ min

 
` P

ˇ̌
FLp`q • p

(
, QL : r0, 1s Ñ .

In finance, say with a random return R, then QR is called the Value at risk:

VaRppLq :“ QLppq.

For example, VaRppRq “ ´0.4 when p “ 0.01, this means that with 1% probability, R
will be at most -40%.

If one assumes normality of random variables, value at risk is straightforward to compute
using the probit function.
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L13-S08Conditional value at risk

Value at risk is a relatively nuanced concept: if you can compute VaR for arbitrary p, you
know everything about a random variable.

Hence, this is powerful, but can be difficult to transparently analyze since VaR for a single
p value can be informative, but is a limited picture.

An even more nuanced quantity involved value at risk is the conditional value at risk, which
is the expectation conditioned on a VaR event:

CVaRppRq :“ “
R

ˇ̌
R § VaRppRq‰

.

Conditional value at risk is useful for characterizing extreme conditions:
CVaRppRq “ ´0.5 for p “ 0.01 means that on the worst 1% of outcomes, the average loss
is -50%.

Warning: Sometimes VaR and CVaR are written in terms of the loss. I.e.,
VaRppRq “ ´0.4 will be written as the p-VaR of R at p “ 1% is 40%.
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